
77 AD-A138893 DISTRIBUTED DATABASE CONTROL
AND ALLOCATION VOLUME 3 II0

DISTRIBUTED DATABASE..U) COMPUTER CORP OF AMERICA

CAMBRIDGE MA WE KLNET AL OCT 83

UNCLASSIFED RADC-TR 83-22660 L3 F3D602-8R C-002R FiO 9/2 N

EEEEEEEEjhEEl

1111 125 ~j 11128ff 112

MICROCOPY RESOLUTION TLST CHARI

RADC-33-226, Vol III (of throe)
Final Technical Report
ctober 1963

DISTRIBUTED DA TA BASE CONTROL
AND ALL OCA TION Distributed Database
System Designer's Handbook

Cr. Computer Corporation of America

Wente K. Lin, Philip A. Bernstein, Nathan Goodman and Jerry Nolte

APPROVED FOR PUBLIC RELESE, DISTRIBUTION UNLIM17ED

DTI C
0m MAR I?8M ROME AIR DEVELOPMENT CENTER

_Air Force Systems Command b
Griffiss Air Force Base, NY 13441

84 03 12 "

This report has been reviewed by the RADC Public Affairs Office (PA) and is
releasable to the National Technical Trformation Service (NTIS). At NTIS it will
be releasable to the general public, including foreign nations.

RADC-TR-83-226 has been reviewed and is approved for publication.

APPROVED: ~ 9 .i~'L~

EMILIE J. SIARKIEWICZ
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COKWADER:

DONALD A. BRANTINGHAM
Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COTD) Griffiss AFB NY 13441. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

UNCLASSIFIED
16CUITY CLASSFICATION OF THIS PAGE (Nba. DWuaffteg)

REPORT DOCUMENTA.TION PAGE BEFORE COPETN FORM
1REOTNUMBE 2. GOVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMBER

RADC-TR-83-226, Vol III (of threj)'. -A $Y
4. TITLE (dad Stoaunj S. TYPE OF REPORT A PERIOD COVERED

DISTRIBUTED DATABASE CONTROL AND ALLOCATION Final Technical Report
Distributed Database System Designer's Hand- Jan 1981 - Jan 1983
book 6. PERFORMING GAG. REPORT NUMBER

N/A
7. AUTNORra) B. CONTRACT OR GRANT NUMBER4'.)

Wente K. Lin Nathan Goodman F30602-81-C-0028
Philip A. Bernstein Jerry Nolte

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM40 ELEMENT. PROJECT. TASK
AREA , .OI UNTHUKRComputer Corporation of America 62702F XUMINMBR

Four Cambridge Center 55812121
Cambridge MA 02142

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATS
October 1983

Rome Air Development Center (COTD) NUEROPAS

Griffiss AFB NY 13441 98
14. MONITORING AGENCY NAME A AODRESS(ti different from Conrolling Office) IS. SECURITY CLASS. (of this report)

UJNCLASS IFIED
Same I5s. OECLASSIFICATON/DOWNG0RADING

N/AscHEDULE

IS. DISTRIBUTION STATEMENT (of chi* Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (at the abstract entered In Block 20, It different from, Report)

Same

III. SUPPLEMENTARY NOTES

RADC Project Engineer: Emilie J. Siarkiewicz (COTD)

It. KEY WORDS (ConIAhue an revere, side Iiflecsa~am ants identify by block number)

Distributed Databases
Concurrency Control
Reliability

20. ABSTRACT (Consinue a toers* eide if neessay and idenuify by block number)
'This is the third of three volumes of the final technical report f or the
project""Distributed Database Control and Allocation."' The first volume
describes frameworks for understanding concurrency control and recovery
algorithms. The second volume describes work on the performance analysis
of concurrency control algorithms. This volume summarizes the results.

This volume attempts to provide a handbook of information about a number o
important concurrency control algorithms which can be used in the design o

DO I JA 7 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (W~iei Dae Etered

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGr(tWae Doae ati*E)

a distributed -)DW. The handbook describes a framework for distributed
DBMS concurrency control which abstracts the essential structure of these
algorithms from algorithmic details, and classified algorithms within this
framework. The handbook then summarizes the results of a detailed simu-
lation study of the performance of these algorithms based on the framework
For various system and application environments, algorithms are ranked
according to their performance. These rankings of algorithms can guide
the system designer in selecting the best distributed DBMS concurrency
algorithm for his system. Additional details of the simulation results
can be found in an Appendix.

In using the results, the system designer must interpret the ranking of thB
algorithms in the context of the performance evaluation model used in the
simulation. The model either does not simulate or makes assumptions about
some details of the algorithms. This is unavoidable in any simulation.
However, the model used here captures all the important factors that effec
the performance of a distributed concurrency control algorithm: 10 delay,
communication delay, CPU delay, transaction blocking through locking, tra -

action abortion due to conflict or deadlock, overhead for deadlock detec-
tion. Thus, the model is general enough to apply to most cases.

This handbook also provides a basis for the system designer to evaluate
different database recovery algorithms. Like database concurrency control,
database recovery has also been studied extensively, many algorithms have
been proposed, and, on the surface, the algorithms seem very different.
However, a careful examination shows that many of these algorithms are
quite similar. This handbook describes a framework for database recovery
algorithms. Within this framework, the many database recovery algorithms
presented in the literature have been reduced to four categories. This
framework can be used as the basis to compare the algorithms. Algorithms
belonging to the same category may differ only in minor details.

4% -. • '...,I. - .-

UNCLASSIFIED
SECURITY CLASSIFICATION OP T-- MAGE(When Dare E,r-

Distributed Database System Designer Handbook Page -1-

CONTENTS

Page

1. Introduction 1-1

2. A Framework For Distributed Database
Concurrency Control 2-1

2.1 Introduction 2-1
2.2 Distributed DBS Architecture 2-2
2 The Framework
2. Schedulers

2.4.1 Two-Phase Locking 2
2.4.2 Timestamp Ordering
2.4.3 Serialization Graph Checking 2-10
2..4 Certifiers 2-11

2.5 Scheduler Location 2-12
.5.1 Distributed Two-Phase Locking 2-12

2.5.2 Distributed Timestamp Ordering 2-1
2.5. Distributed Serialization Graph Checking 2-1
2.5.9 Distributed Certifiers 2-1
2.5.5 Other Architectures 2-14

2.6 Data Replication 2-14
2.7 Multiversion Data 2-18

2.7.1 Multiversion Timestamping 2-20
2.T.2 Multiversion Looking 2-20

2.8 Combining the Techniques 2-22

3. Database Recovery Algorithms 3-1

3 2.1 Introduction 3-1
.2 A Model Of Centralized Database

System Recover 3-2
3.j Agorithms That Undo But Don't Redo

.Algorithms That Redo But Don't Undo 3-2
5 Algorithms That Redo And Undo 3-l8

3. Algorithms That Don't Undo Or Redo -11
. Recovery In A Distributed Database System -14

Two-Phase Commit
.9 Three-Phase Commit

3.10 Replicated Data 3-18

4. Performance of Distributed Concurrency Control 4-1

4.1 Performance Model :2
4.2 Description of Algorithms
4.4 Performance Evaluation 4-10

.1 Short Transaction Loaded & 10 Bound 4-10
4.:.2 Short Transactions & Communication Bound 4:1
4: Long Transaction Loaded & 10 Bound 4-1
4.1.: Long Transactions & Communication Bound 4-1

4.4 Conclusion 4-20

5. References 5-1

Appendix A A-1

Distributed Database System Designer Handbook Page -Ji-
ILLUSTRATIONS

ILLUSTRATIONS

2.1 DDBS Architecture 2-
2.2 Processing Operations2:j Hanashak.i~nl
2 DDBS Architecture with Centralized Sobeduler 2-7
2. Hybrid Architecture 2-!7;
2 Hierarchical Architecture 2-15
2.7 Processing Writes in Primary Copy 2-17

4.1 System Classification 4-2
(Short Loaded or Long Loaded)

4.2 Summary of Concurrency Control Algorithms 4-10
4.3 Performance Comparison: Short 4-13

Transaction Loaaed & 10 Bound
4.4 Performance Comparison: Short Transaction Loaded 4-15

& Communication Bound
4.5 Performance Comparison: Long 4-18

Transaction Loaded & 10 Bound
4.6 Performance Comparison: Long 4-21

Transactions & Communication Bound

A.1 READ THROUJGHPUT: Short Transaction A-2
Loaded & Communication Bound

A.2 WRITE THROUGHPUT: Short Transaction A-3
Loaded & Communication Bound

A.3 Average Response Per Read Bequest A-
Short Transactions & Communication Bound

A.4 Average Response Per Write Request, Short A-5
Transactions & Communication bound

A.5 Through-Put (Read/Write): Short Transactions A-6
& Communication Bound

A.6 Through-Put (Read/Write) Short A-7
Transactions & 10 Bounde8

A.7 Average Response Time (Head/Write): A-8
Short Transactions & 10 Bound

A.8 Through-Put (Read/Write): Long A-9
Transaction Loaded & 10 Bound

A.9 Average Response Time: Long A-10
Transaction Loaded & 10 Bound

A.10 Through-Put (Read/Write): Long Transaction A-1
Loaded & Communicaton Bound

A.11 Average Response Time (Read/Write) A-11
Long Transaction & Communiation Bound

Distributed Database System Designer Iandbook Paeo 1-1
Introduction Section 1

1. Introduction

The design of a distributed database management system (DBMS)

involves many critical design decisions. It is recognized that one of

the most important of these design decisions is the choice of the con-

currency control algorithm to be used. Many concurrency control algo-

rithms for distributed DBMSs have been proposed [Bernlaj, but few stu-

dies have been undertaken to rigorously compare their performance

[LIN8l, LINN82a, LINN82b, LINN82c, GARC78, GARC79a, GALL82, RIES79a,

RIES79b] and other characteristics. One possible reason for this is

that, in detail, these algorithms seem very different, thus making com-

parison difficult. As a result, the distributed DBMS designer finds it

difficult to choose the concurrency control algorithm which is appropri-

ate given the design parameters of the particular system under con-

sideration.

This report attempts to provide a handbook of information about a

number of important concurrency control algorithms which can be used in

the design of a distributed DBMS. The report describes a framework for

distributed DBMS concurrency control which abstracts the essential

structure of those algorithms from algorithmic details, and classifies

algorithms within this framework. The report then summarizes the

results of a detailed simulation study of the performance of these alSo-

rithms based on the framework. For various system and application

environments, algorithms are ranked according to their performance.

These rankings of algorithms can guide the system designer in selecting

the best distributed DBMS concurrency algorithm for his system. Addi-

tional details of the simulation results can be found in an Appendix,

while full details of the simulation results can be found in associated

semi-annual and final technical reports [LINaIa, LIN82a, LIN82b, LIN83J.

In using the results, the system designer must interpret the rank-

ing of the algorithms in the context of the performance evaluation model

used in-the simulation. The model either does not simulate or makes

assumptions about some details of the algorithms. This is unavoidable

In any simulation. Rowever, the model used here captures all the

Pags 1-2 Distributed Database System Designer Handbook
Section 1 Introduction

important factors that effect the performance of a distributed con-

currency control algorithm: 10 delay, communication delay, CPU delay,

transaction blocking through locking, transaction abortion due to con-

flict or deadlock, overhead for deadlock detection. Thus, the model is

general enough to apply to most cases.

This report also provides a basis for the system designer to evalu-

ate different database recovery algorithms. Like database concurrency

control, database recovery has also been studied extensively, many algo-

rithms have been proposed, and, on the surface, the algorithms seem very

different. However, a careful examination shows that many of these

algorithms are quite similar. This report describes a framework for

database recovery algorithms. Within this framework, the many database

recovery algorithms presented in the literature have been reduced to

four categories. This framework can be used as the basis to compare the

algorithms. Algorithms belonging to the same category may differ only

in minor details.

The report is organized as follows. Section 2 describes the frame-

work for distributed DBMS concurrency control algorithms, and section 3

describes the framework for database recovery algorithms. Section 4

compares the performance of various distributed DBMS concurrency control

algorithms, using the framework developed in Section 2. Section 5 con-

tains a list of references.

Distributed Database System Designer Handbook Page 2-1
A Framework For Distributed Database Section 2
Concurrency Control

2. A Framework For Distributed Database
Concurrency Control

2.1 Introduction

A distributed database system (DDBS) is a database system (DBS)

that provides commands to read and write data that is stored at multiple

sites of a network. If users access a DDDS concurrently, they may

interfere with each other by attempting to read and/or write the same

data. Concurrency control is the activity of preventing such behavior.

Dozens of algorithms that solve the DDBS concurrency control prob-

lem have been published (see EBERN82] and the references). Unfor-

tunately, many of these algorithms are so complex that only an expert

can understand them.

To remedy this situation, we develop, in this section, a simple

framework for understanding concurrency control algorithms. The frame-

work decomposes the problem into subproblems and gives basic techniques

for. solving each subproblem. To understand a published algorithm, one

first identifies the technique used for each subproblem and then checks

to see whether the techniques have been appropriately combined. The

framework can also be used to develop new algorithms by combining exist-

ing techniques in new ways.

This section has eight subsections. Sections 2.2 and 2.3 set the

stage by describing a simple DDBS architecture and sketching the frame-

work in terms of the architecture. The framework itself appears in Sec-

tions 2.4 through 2.8. Section 2.9 uses the framework to explain

several published algorithms. Section 2.10 presents a summary.

Page 2-2 Distributed Database System Designer Iandbook
Section 2 A Framework For Distributed Database

Concurrency Control

2.2 Distributed DBS Architecture

We use a simple model of DDBS structure and behavior. The model

highlights those aspects of a DDBS that are important for understandiaS

concurrency control, while hiding details that don't affect concurrency

control.

A database consists of a set of data i.tes, denoted (.... x,y,z).

In practice, a data item can be file, record, page, etc. But for the

purposes of this paper, it's best to think of a data item as a simple

variable. For now, assume each data item is stored at exactly one site.

Users access data items by issuing Read and Write operations.

Read(z) returns the current value of x. Write(x,new value) updates the

current value of x to new-value.

Users interact with the DBMS by executing prgrams called transac-

tions. A transaction only interacts with the outside world by issuing

Reads and Writes to the DDBS or by doing terminal I/0. We assume that

every transaction is a complete and correct computation: each transac-

tion, if executed alone on an initially consistent database, would ter-

minate, produce correct results, and leave the database consistent.

Each site of a DDBS runs one or more of the following software

modules (see Figures 2.1 and 2.2): a transaction manager (M), a data

manager (D), or a scheduler. Transactions talk to T11's; 11's talk to

s-shedulers; schedulers talk among themselves and also talk to DW's; DN's

manage the data.

Each transaction also issues a Begi operation to its TX when it

starts executing and an I" when it's finished.

The 1V forwards each Read and Write to a scheduler. (Which

scheduler depends on the concurrency control algorithm; usually the

scheduler is at the same site as the data being read or written. In

some algorithms, Begins are also sent to schedulers.)

The scheduler controls the order in which Dis process Reads and

Writes. When a scheduler receives a Read or Write operation, it can

either outyst the operation right away (usually to a DM, sometimes to

Distributed Database Designer Handbook Page 2-3
A Framework For Distributed Database Section 2
Concurrency Control

transaction

tr1anseulctDUdat

transaction

transaction

traSnhection

transaction

Figure 2.1 DDBS Architecture

Transaction
Scheduler DII

Begin T au

Read (z) on

End

ask
Scheduler DU

Figure 2.2 Processing Operations

Page 2-4 Distributed Database System Designer Handbook
Section 2 A Framework For Distributed Database

Concurrency Control

another scheduler), delay the operation by holding it for later action,

or reiect the operation. A rejection causes the system to abort the

transaction that issued the operation: every Write processed on behalf

of the transaction is undone (restoring the old value of the data item),

and every transaction that read a value written by the aborted transac-

tion is also aborted. This phenomenon of one abort triggering other

aborts is called cascading aborts. (It is usually avoided in commercial

DBSs by not allowing a transaction to read another transaction's output

until the DBS is certain that the latter transaction will not abort. In

this report, we will not try to prevent cascading aborts.. Techniques

for implementing abort will be discussed in Section 3. (See [GRAY81,

HAMM80, LAMP76].)

The DM executes each Read and Write it receives. For Read, the DN

looks in its local database and returns the requested value. For Write,

the DM modifies its local database and returns an acknowledgment. The

DN sends the returned value or acknowledgment to the scheduler, which

relays it back to the TM, which relays it back to the transaction.

DMs do not necessarily execute operations 'first come, first

served'. If a DU receives a Read(x) and a Write(x) at about the same

time, the DM is free to execute these operations in either order. If

the order matters (as it probably does in this case) it is the

scheduler's responsibility to enforce the order. This is done by using

a handshaking communication discipline between schedulers and DMs (see

Figure 2.3). If the scheduler wants Read(x) to be executed before

Write(x), it sends Read(x) to the DX, waits for the DM's response, and

then sends Write(x). Thus the scheduler doesn't even send Write(x) to

the DN until it knows Read(x) was executed. Of course, when the execu-

tion order doesn't matter, the scheduler can send operations without the

handshake.

Handshaking is also used between other modules when execution order

is important.

A i

Distributed Database Sstm Desi tner Handbook Page 2-1A F'ramework For Distri uted Data age seo n 2
Concurrency Control

To execute Read(z) on behalf of transaction 1

followed by Write(x) on behalf of transaction 2

s e n d R e a d-
b)r e c e i v e R e a d ()

execute Read(%)

send value

receive value

send VriteWx

execute Write(z)

send ask

Figure 2.3 Handshaking

2.3 The Framework

The DDBS modules that are moat important to concurrency control are

schedulers. A concurrency control algorithm consists of some number of

schedulers that run some type of scheduling algorithm in a centralized

or distributed fashion. In addition, the concurrency control algorithm

must handle 'replicated data'. TN's often handle this problem.

To understand a concurrency control algorithm using our framework

one must determine:

1. The I=n aL scheduingaoi&.t used (discussed in Sections 2.4 and

2.7)

Page 2-6 Distributed Database System Designer Handbook
Section 2 A Framework For Distributed Database

Concurrency Control

2. The location of the scheduler(i) (i.e.. centralized vs. distributed

(Section 2.5))

3. Now replicated data is handled (Section 2.6)

2.4 Schedulers

There are four types of schedulers: two-phase locking, timestamp

ordering, serialization graph checking, and certifiers. Each type can

be used to schedule rw conflicts, ww conflicts, or both. This section

describes each type of scheduler and assumes that it is used for both

kinds of conflict. Ways of combining scheduler types (e.g., two-phase

locking for rw conflicts and timestanp ordering for vw conflicts) are

described in Section 2.8. This section also assumes that the scheduler

runs at a single site,(see Figure 2.4). Section 2.5 lifts this res-

triction.

2.4.1 Two-Phase Locking

A two-phase locking (2PL) is defined by three rules (EGLT):

1. Before outputting ri[x] (reap. wi[i]), set a read-lock (resp.

write-lock) for T i on x. The lock must be held (at least) until the

operation is executed by the appropriate NI. (Handshaking can be

used to guarantee that locks are held long enough.)

2. Different transactions cannot simultaneously hold 'conflicting'

locks. Two locks conflict if they are on the same data item and (at

least) one is a write-lock. If rw and ww scheduling is done

separately, the definition of 'conflict' is modified. For rw

scheduling, two locks on the same data item conflict if nasIl one

is a write-lock (i.e., write-locks don't conflict with each other).

For ww scheduling, both locks must be write locks.

3. After releasing a lock, a transaction cannot obtain any more locks.

Rule (3.) causes locks to be obtained in a two-phase manner. Dur-

ing its growing phase, a transaction obtains looks without releasing

Distributed Database System Designer hndbook s o 2-
A Framework For Distributed Data as so
•Concurrency Control

transactio

transaction

transaction

transaction

transaction

transaction

Figure 2.4 DDBS Architecture with Centralized Scheduler

any. By releasing a lock, the transaction enters its shrinking phase

during which it can only release locks. Rule (3.) is usually imple-

mented by holding all of a transaction's locks until it terminates.

Due to Rule (2.), an operation received by a scheduler may be

delayed because another transaction already owns a conflicting lock.

Such blocking situations can lead to deadlock. For example, suppose

r1 [x] and r2 [y) set read-locks, and then the scheduler receives w1 [Y]

and w2 [x]. The scheduler cannot set the write-lock needed by wl[y]

because T2 holds a read-lock on y. Nor can it set the write-lock for

w2 [x] because TI holds a read-lock on x. And, neither T, nor T2 can

release its read-lock before getting the needed write-lock because of

rule (3.). Hence, we have a deadlock: TI is waiting for T2 which is

waiting for T.

Deadlocks can be characterized by a waits-for graph [EOLT72,

KING741,_ a directed graph whose nodes represent transactions and whose

edges represent waiting relationships. Bdge Ti e.Tj means Ti is waiting

for a lock owned by T . A deadlock exists if and only if (iff) the

Page 2-8 Distributed Database System Designer Handbook
Section 2 A Framework For Distributed Database

Concurrency Control

waits-for graph has a cycle. For example, in the above example the

waits-for graph is

T1_ _ _ T2

A popular way of handling deadlock is to maintain the waits-for

graph and to periodically search it for cycles. (See [Chap. 5, AHO75]

for cycle detection algorithms.) When a deadlock is detected, one of

the transactions on the cycle is aborted and restarted, thereby breaking

the deadlock.

2.4.2 Timestamp Ordering

In timestamp ordering (T/O) each transaction is assigned a globally

unique timestamp by its TM. (See [BERN82, TH0M79] for how this is

done.) The TM attaches the timestamp to all operations issued by a tran-

saction. A T/O scheduler is defined by a single rule: Output all pairs

of conflicting operations in timestamp order. Make sure conflicting

operations are executed by DMs in the order they were output.

(Handshaking can be used to make sure of this.) As for 2PL, the defini-

tion of 'conflicting operation' is modified if rw and ww scheduling are

done separately.

Several varieties of T/O schedulers have been proposed. We only

sketch these variations here. Full details appear in [BERN82].

A basic T/O scheduler outputs operations in essentially first come,

first served order, as long as the T/O scheduling rule holds. When the

scheduler receives ri[x] it does the following:

jf TS(i) < largest timestamp of any Write on x yet 'accepted'

then reject ri(x]

else 'accept' ri(x] and output it as soon as all Writes on x with

smaller timestamp have been acknowledged by the DX.

When the scheduler receives wi[y] it behaves as follows.

II TS(i) (largest timestamp of any Read or Write on a yet

'accepted'

1km reject wi[x]

gjJj 'accept' wi[x] and output it as soon as all Reads and Writes on

x with smaller timestamp have been acknowledged by the Dli.

, - ,.ui .. .i

Distributed Database System Designr Handbook Pate 2-9
A Framework For Distributed Database Section 2
Concurrency Control

A c_9nsSvii J1.Q/2 scheduler avoids rejections by delaying opera-

tions instead. An operation is delayed until the scheduler is sure that

outputting it will cause no future operations to be rejected. Conserva-

tive T/O requires that each scheduler receive Reads and Writes from each

IN in timestamp order. To output any operation, the scheduler must have

an operation from each IN in its 'input queue'. The scheduler then

'accepts' the operation that has the smallest timestamp. 'Accept' means

to remove the operation from the input queue and to output it as soon as

all conflicting operations that have smaller timestamp have been ack-

nowledged by the DM. Variations on conservative T/O are discussed in

[BERN82, BEI80N, LIN79].

Basic T/O and conservative T[O are endpoints of a spectrum. Basic

T/O delays operations very little, but it tends to reject many opera-

tions. Conservative T/O never rejects operations, but it tends to delay

them often. One can imagine T/O schedulers between these extremes. To

our knowledge, no one has yet proposed such a scheduler.

Thomas' write rule (M11) is a technique that reduces delay and

rejection [THOM793. MIW can be used only to schedule Writes, and it

needs to be combined with basic or conservative T/O to yield a complete

scheduler. If we're interested only in ww scheduling, TWR is simple.

When the scheduler receives wily] it does the following:

i 75(i) (largest timestmp of any Write on x yet 'accepted'

then 'pretend' to execute wi[y] (i.e., send an acknowledgement back

to the TN, but don't send the Write to the DR

j& 'accept' wi[x] and process it as usual.

The basic T/O-ThW combination works like this. Reads are processed

exactly as in the basic T/O. But when the scheduler receives a wl[y,

it combines the basic T/O rule with TWl as follows:

i TS(i) (largest timestmp of any Read

on a yet 'accepted' rw scheduling (basic T/O)

th.n 'reject' wily]

elssiL 1(i) (largest timestamp of any Write on x yet 'accepted'

w scheduling (TWR)

then 'pretend' to execute wi[y]

else 'accept' witz] and output it as soon as all operations on x with

Page 2-10 Distributed Database System Designer Handbook
Section 2 A Framework For Distributed Database

Concurrency Control

smaller timestamp have been acknowledged by the DIM.

The conservative T/O-TMR combination is described in [DERN82].

2.4.3 Serialization Graph Checking

A serialization &ray (SG) is a directed graph whose nodes are

transactions) such as To Tn -- and whose edges are all Ti->T.

such that, for some x, either (I.) Ti reads x before T writes x, or

(2.) Ti writes x before T reads x, or (3.) Ti writes x before Tj writes

x. A serialization graph checking scheduler works by explicitly build-

ing a serialization graph (SG) and checking it for cycles. Like basic

T/0, an SG checking scheduler never delays an operation (except for

handshaking reasons). Rejection is the only action used to avoid

incorrect execution.

An SG checking scheduler is defined by the following rules.

1. When transaction T i Begins, add node T i to SG.

2. When a Read or Write from Ti is received, add all edges Ti -mTJ such

that T. is a node of SO, and the scheduler has already output a con-

flicting operation from T.. As for the previous schedulers, the

definition of 'conflicting operation' is modified if rw and wv con-

flicts are scheduled separately.

3. If after Rule 2 SO is still acyclic, output the operation. Make

sure that conflicting operations are executed by DMa in the order

they were output. (Handshaking can be used for this.)

4. If after Rule 2 SG has become cyclic, reject the operation. Delete

node Ti from all edges Ti-b-T. or T.-T i from SG. (SO is now &cyclic

again.)

One technical problem with SO checkers is that a transaction must

remain in SG even after it has terminated. A transaction can be deleted

from SO only when it is a -source node of the graph (i.e., when it has no

incoming edges). See [CASA79] for a discussion of this problem and for

techniques that efficiently encode information about terminated transac-

tions that remain in SG.

Distributed Database System Designer Handbook Pa; 2-11
A Framework For Distributed Database Section 2
Concurrency Control

2.4.4 Certifiers

The term certifier refers to a scheduling philosophy, not a

specific scheduling rule. A certifier is a scheduler that makes its

decisions on a per-transaction basis. When a certifier receives an

operation, it internally stores information about the operation and out-

puts it as soon as all earlier conflicting operations have been ack-

novledged. When a transactions ends, its T1 sends the End operation and

outputs it as soon as all earlier conflicting operations have been ack-

nowledged. At this point, the certifier checks its stored information

to see whether the transaction executed serializably. If it did, the

certifier certifies the transaction, allowing it to terminate; other-

wise, the certifier aborts the transaction.

All of the earlier schedulers can be adapted to work as certifiers.

Here is an SG checking certifier. When a certifier receives an opera-

tion, it adds a node and some edges to SG as explained in the previous

section. The certifier does not check for cycles at this time. When a

transaction, Ti, ends, the certifier checks SG for cycles. If T i does

not lie on a cycle, it is certified; otherwise it is aborted.

Here is a 2PL certifier [THOM79. KUNG79]. Define a transaction to

be active from the time the certifier receives its first operation until

the certifier processes its End. The certifier stores two sets for each

active transaction Ti:

Ti's readset, RS(i) = (xithe certifier has output ri[x])

Tits writoset, WS(i) - [the certifier has output witz]).

The certifier updates these sets as it receives operations. When the

certifier receives Endi, it runs the following test:

Let RS(active) - U(RS(j), such T. is active, but j 0 i)

WS(active) - U(WS(j), such T. is active, but j 0 i)

if RS(i) S(active) 0 0, or

WS(i) RS(active) UWS(active) 0 0

then certify Ti

also abort Ti.

This amounts to pretending that transactions hold imaginary looks

on their readsots and writesets. When transaction Ti ends, the certif-

ier sees whether Tits imaginary looks conflict with the imaginary locks

Page 2-12 Distributed Database System Designer Handbook
Section 2 A Framework For Distributed Database

Concurrency Control

held by other active transactions. If there is no conflict, Ti is cer-

tified. Otherwise i , is aborted.

T/O certifiers are also possible. To our knowledge, no one has

proposed this algorithm yet. Certifiers also can be built that will

check for serializable executions during transactions' executions, not

just at the end. The extreme version of this idea is to check for seri-

alizability on every operation. At this extreme, the certifier reduces

to a 'normal' scheduler.

2.5 Scheduler Location

The schedulers of Section 2.5 can be modified to work in a distri-

buted manner. Instead of one scheduler for the whole system, we now

assume one scheduler per DN (refer back to Figure 2.1). The scheduler

normally runs at the same site as the DX and schedules all operations

that the DX executes.

The new issue in this setting is that the distributed schedulers

must cooperate to attain the scheduling rules of Section 2.5.

The main problem caused by distributed schedulers is the mainte-

nance of global data structures. Distributed 2PL schedulers need a glo-

bal waits-for graph. Distributed SG checkers need a global SO. In dis-

tributed T/O scheduling, no global data structures are needed; each

scheduler can make its scheduling decisions using local copies of R-

TS(x) and W-TS(x) for each x at its DM. Distributed certifiers gen-

erally manifest the same problems as their corresponding schedulers.

2.5.1 Distributed Two-Phase Locking

Refer to the 2PL scheduling rules of Section 2.5.1. Rules (1.) and

(2.) are 'local'. The scheduler for data item x schedules all coopera-

tions on x. Hence this scheduler can set all locks on x. Rule (3.)

requires a small amount of inter-scheduler cooperation, no scheduler can

obtain a lock for transaction Ti after any scheduler releases a lock for

Ti. This can be done by handshaking between TH's and schedulers. When

Ti Ends, its TX waits until all of Ti's Reads and Writes are

Distributed Database System Designer Handbook Page 2-13
A Framework For Distributed Database Section 2
Concurrency Control

acknowledged. At this point the IN knows that all of Ti's locks are set

and that it's safe to release locks. The TN forwards Endi to the

schedulers, which then release Ti's looks.

One problem with distributed 2PL is that multi-site deadlocks are

possible. Suppose x and y are stored at sites A and B, respectively.

Suppose that zi[yI is processed at A. setting a read-lock on z for Ti at

A; and suppose that rj[x] is processed at site B, setting a read-lock on

y for T at B. If w [x] and wi[Y] are now issued, a deadlock will

result; Tj will be waiting for Ti to release its lock on x at A, and Ti

will be waiting for Tj to release its lock on y at B. Unfortunately,

the deadlock isn't apparent by looking at site A or site B alone. Only

when taking the union of the waits-for graph at both sites does the

deadlock cycle materialize.

See [1A79, STON79, GLIG80, ROSE78] for solutions to this problem.

2.5.2 Distributed Timestamp Ordering

T/O schedulers are easy to distribute because the T/O scheduling

rule of Section 2.5.2 is inherently local. Consider a basic T/O

scheduler for data item x. To process an operation on i, the scheduler

needs to know only whether a conflicting operation that has a larger

timestamp has been accepted. Since the scheduler handles all operations

on x, it can make this decision itself.

2.5.3 Distributed Serialization Graph Checking

SQ checkers are harder to distribute than the other schedulers

because the serialization graph (SG) is inherently global. A transac-

tion that accesses data at a single site can become involved in a cycle

that spans many sites. See [CASA79J for a discussion of this problem.

Page 2-14 Distributed Database System Designer Handbook
Section 2 A Framework For Distributed Database

Concurrency Control

2.5.4 Distributed Certifiers

Distributed certifiers have a synchronization requirement a bit

like Rule (3.) of 2PL: Ti's TM must not send Endi to any certifier

until all of T.'s Reads and Writes have been acknowledged. (i.e., we

must not try to certify T i at any site until we are ready to certify Ti

at all sites).

Beyond this, each distributed certifier behaves like the

corresponding scheduler. A distributed 2PL certifier needs little

inter-scheduler cooperation (beyond that described in the previous para-

graph). The certifier at each site keeps track of the data items st ita

site read or written by active transactions. When a certifier at site A

receives Endi , it sees whether any active transaction conflicts with Ti

at site A. If not, Ti is certified at site &. If Ti is certified at

all sites at which it accessed data, then it is 'really' certified; oth-

erwise it is aborted.

A distributed SG certifier shares the problems of distributed SG

schedulers. The certifier needs to check for cycles in a global graph

every time a transaction ends.

2.5.5 Other Architectures

Centralized and distributed scheduling are endpoints of a spectrum.

One can imagine hybrid architectures that feature multiple D/s per

scheduler. See Figure 2.5. This architecture adds no technical issues

beyond those already discussed.

Hierarchical scheduler architectures are also possible. See Figure

2.6. To our knowledge, no one has studied this approach.

2.6 Data Replication

In a revylcated dstabase, each loxical data item, z, can have many

phylical copies denoted (z1l.....m), which are resident at different

D~s. Transactions issue Reads and Writes on logical data items. TV's

translate those operations into Reads and Writes on physical data. The

effect, as seen by each transaction, must be as if there were only one

,:v HadbookPae 2-15Distributed Database System DesItse adoo eto
A Framework For Distributed Dat 0 seio
Concurrency Control

7M
acheduerD :I:

TM Scchede

Figuched 2. yrArch itcdr

mk achehDI

TX achehDI

TM ached

m ched DII

Figure 2.6 Hierarchical Architecture

Pa5 e 2-16 Distributed Database System Designer Handbook
Section 2 A Framework For Distributed Database

Concurrency Control

copy of each data item.

There is a simple way to obtain this effect. Each TIN translates

ritx] into ri(x j] for some copy xj of x and wi[x] into [wi[zjJall

copies xj of x). If the scheduler(s) is SR, the effect is just like a

nonreplicated database. To see this, consider a serial log equivalent

to the SR log that executed. Since each transaction writes into all

copies of each logical data item, each ri~xj] read from the 'latest'

transaction preceding it that wrote into any copy of x. But this is

exactly what would have happened had there been only one copy of x.

(For a more rigorous explanation, see [ATTA821.) Consider this example:

w0[xl - p. rl[xll]-----, [XI]

w0 [x1-.r 1 [Y] ---- w 1 [x 1]

wO[x2) lw2[Y1]

L = w0 ly] / < r2[x 2]

wo[Y 2] 2[Y2] b'w2[Y2]

x, and x2 are copies of logical data item x; yl and y2 are copies of y.

To produces initial values for both copies of each data item. T, reads

x and y, and writes x; T2 reads x and y, and writes y.

L3 is SR. It is equivalent to the following serial log:

L4 = w0 [x1] w0 [x2] w0 [y1] wo[Y 21 rl[z1 J rl[Yl wl[X1] wl[X 2]

r2[x2] r2 (y2] w2[Yl] w2 [y2]

Note that each Read, e.g., r2 [x21 or r2 [y2], reads from the 'latest'

transaction preceding it that wrote into any copy of the data item.

Therefore, L4 has the same effect as the following log in which there is

no replicated data:

Lj = wo[x] woty] r1lxl r1 [y] wl[] r211] r2 tyI w2 [y]

We call this the do nothing approach to replication -- just write

into all copies of each data item and use an SR scheduler.

Two other approaches to replication have been suggested. In the

krimary copy approach, some copy of each z, say xp, is designated as its

primary copy [STON79]. Each TV translates riLxJ ix 0 ritx j] for some

copy xj, as before. Writes are translated d,'ferently. The TN

Distributed Database System Desijner Handbook Page 2-17
A Framework For Distributed Database Section 2
Concurrency Control

Begin

IN Scheduler DU

write (z)

End w[z2]

Scheduler DI

Note: x, is primary copy

Figure 2.7 Processing Writes in Primary Copy

translates vi[x] into a single Write, wi[ip], on the primary copy. When

the primary copy's scheduler outputs wi[X p], it also issues Writes on

the other copies of X (i.e., wi[xiJ wi[xm). See Figure 2.7. These

Writes are processed by the schedulers for x1 m in the usual way.

For example, in 2PL, the scheduler for xj must put a write-lock on tj

for Ti before outputting wi[Lx]. The primary copy's scheduler may be

centralized (in which case the technique is called vlimary site

[ALSB76]), or distributed with the primary copy's DM.

Primary copy is a good idea for 2PL schedulers. It eliminates the

possibility of deadlock caused by Writes on different copies of one data

item. Suppose x has copies x, and x2 . Suppose that T1 and T2 want to

Write a at about the same time. In the do nothing approach, the follow-

ing execution is possible: T, looks xl; T2 locks '2; T, tries to lock

Page 2-18 Distributed Database System Designer Handbook
Section 2 A Framework For Distributed Database

Concurrency Control

12 but is blocked by T2's lock; T2 tries to lock x, but is blocked by

Ties lock. This is a deadlock. Primary copy avoids this possibility

because each transaction must lock the primary copy first.

In the voting approach to replication, TMs again distribute Writes

to all copies of each data item [THeM79]. Assume that we are using dis-

tributed schedulers. When a scheduler is ready to output wi.x1, it

sends a vote of yes to the vote collector for x; it does not output

wi[x.] at this time. When the vote collector receives yes votes from a

majority of schedulers, it tells all schedulers to output their Writes.

(Each scheduler may need to update its local data structures before out-

putting wi[x] (e.g., set a write-lock on xj.)) Assume each scheduler is

correct (i.e., produces an acyclic SG). Then, since every pair of con-

flicting operations was voted yes by some correct scheduler (both opera-

tions got a majority of yes's), the SG must be acyclic and the result is

correct.

The principal benefit of voting is fault tolerance; it works

correctly as long as a majority of sites holding a copy of x are run-

ning. See rTHEM79, GIFF79] for details.

2.7 Multiversion Data

Let us return to a database system model where each logical data

item is stored at one DM.

In a multiversion database each Write wifxl, produces a new copy

(or version) of x, denoted xi. Thus, the value of z is a set of ver-

sions. For each Read, rifxI, the scheduler selects one of the versions

of x to be read. Since writes don't overwrite each other, and since

Reads can read any version, the scheduler has more flesibility in con-

trolling the effective order of Reads and Writes.

Although the database has multiple versions, users expect their

transactions to behave as if there were just one copy of each data item.

Serial logs don't always behave this way. For example:

w0 [x 0 rl[xO] w1 lx y I r2 x0 y I w2 [y 2]

Distributed Database System Designer Handbook Page 2-19
A Framework For Distributed Database Section 2
Concurrency Control

is a serial log, but its behavior cannot be reproduced with only one

copy of x. We must therefore restrict the set of allowable serial logs.

A serial log is L-S.M serial (U I-Sr ia") if each ri[xJ] reads

from the last transaction preceding it that wrote into any version of x.

The above log is not 1-serial, because r2 reads x from wO , but

w0 [x0]<wl[xi]<r2 [x
0]. A log is 1-serializable (1-SR) if it's equivalent

to a 1-serial log. 1-serializability is our correctness criterion for

multiversion database systems.

All multiversion concurrency control algorithms (that we know of)

totally order the versions of each data item in some simple way. A ver-

sion order, <(, for L is an order relation over versions such that, for

each x, <(totally orders the versions of x.

Given a version order <<, define the multiversion SG w.r.t. L and

<< (denoted NVSG(L,<<)) as SG(L) with the following edges added:* for
each rj[xJ] and Wkxk I in L, if xk {• j then include Tk-O T , else include

Tj-'-Tk.

MULTIVERSION THEOREM [BERN81a]. A multiversion o1 is I-li iff

there exists a version order << such that NVSG(L,<<) is &cyclic.

[]

This theorem enables us to prove multiversion concurrency control

algorithms to be correct. We must argue that for every log L produced

by the algorithm, NVSG(L,(<) is acyclic for some <<.

The types of multiversion schedulers that have been proposed fall

into two classes that approximately correspond to timestamping and lock-

ing.

*Note that the two operations conflict (and produce an edge in SG(L))
if they operate on the same version and one of them is a write.

-s..A.

Page 2-20 Distributed Database System Designer Handbook
Section 2 A Framework For Distributed Database

Concurrency Control

2.7.1 Multiversion Timestamping

Multiversion concurrency control was first introduced by Reed in

his multiversion timestamping method [REED78]. In Reed's algorithm,

each transaction had a unique timestamp. Each Read and Write carries

the timestamp of the transaction that issued it, and each version car-

ries the timestamp of the transaction that wrote it. The version is

defined by xi <(xj if TS(i)<TS(j).

Operations are processed 'first come, first served'.** However, the

version selection rules ensure that the overall effect is as if opera-

tions were processed in timestamp order. To process ri[x], the

scheduler (or DM) returns the version of x with the largest timestamp J

TS(i). To process wi[x], version zi is created, unless some wj[x] and

r kx] have already been processed with TS(j)<TS(i)<TS(k). If this con-

dition holds, the Write is rejected.

An analysis of MVSG(L,>>) for any L produced by this method shows

that every edge Ti-0-Tj is in timestamp order (TS(i)<TS(j)). Thus

MVSG(L,(() is acyclic, and so L is 1-SR.

2.7.2 Multiversion Locking

In multiversion locking, the Writes on each data item, x, must be

ordered. We define x ix J if wi[x J<wj[x]. Each version is in the

certified or uncertified state. When a version is first written, it is

uncertified. Each Read. ri[x], read either the last (wrt«) certified

version of z or any uncertified version of x. When a transaction fin-

ishes executing, the database system attempts to certify it. To certify

Ti, three conditions must hold:

Cl. For each r [xJ], xj is certified.

C2. For each wi1[xi], all x < xi are certified.

C3. For each wi[xi] and each xi (< xi , all transactions that read

x1 have been certified.

These conditions must be tested atomically. When they hold, T1 is

*Handshaking is used to ensure that logically conflicting operations
are executed by DMs in the order the scheduler output them.

Distributed Database System Designer Handbook Pase 2-21
A Framework For Distributed Database Section 2
Concurrency Control

declared to be certified and all versions it wrote are (atomically) cer-

tified.

An analysis of MVSG(L,(() for any L produced by this method shows

that every edge Ti-wT is consistent with the order in which transac-

tions were certified. Since certification is an atomic event, the cer-

tification order is a total order. Thus, NVSG(L,(() is acyclic, and so

L is 1-SR.

Two details of the algorithm require some discussion. First, the

algorithm can deadlock. For example, in this log:

w0 [x0] r[x0 I r2 [x 0 wl[zI w2 [2]

Ti and T2 are deadlocked due to certification condition C3. As in 2PL,

deadlocks can be detected by cycle detection on a waits-for graph whose

edges include Ti-e-T. such that Ti is waiting for T to become certified

(so that Ti will satisfy Cl-C3).

Second, C1-C3 can be tested atomically without using a critical

section. Once Cl or C2 is satisfied for some ri[xJ] or wv.xi3, no

future event can falsify it. When C3 becomes true for some vitl]i, we

'lock' zi so that no future reads can read versions that precede xi .

This allows Cl-C3 to be checked one data item at a time. Of course, the

waits-for graph must be extended to account for these new version locks.

Two similar multiversion locking algorithms have been proposed

which allow at most one certified version of each data item. In

Stearns' and Rosenkrantz's method (STEAI], the waits-for graph is

avoided by using a timestamp-based deadlock avoidance scheme. In Bayer

et al.'s method [BAYESOa, BAYE80b], a waits-for graph is used to prevent

deadlocks. This algorithm consults the waits-for graph before selecting

a version to read, and it always selects a version that crests no

cycles.

Multiversion locking algorithms in which queries (read-only tran-

sections) are given special treatment are described in [CRAN82, DUBO82,

BJRN82];

Page 2-22 Distributed Database System Designer Handbook
Section 2 A Framework For Distributed Database

Concurrency Control

2.8 Combining the Techniques

The techniques described in Sections 2.4-2.8 can be combined in

almost all possible ways. The three basic scheduling techniques (2PL,

T/O, SG checking) can be used in scheduler mode or certifier mode. This

gives six basic concurrency control techniques. Each technique can be

used for rw or ww scheduling or both (62 36). Schedulers can be cen-

tralized or distributed (36 x 2 = 72), and replicated data can be han-

dled in three ways (Do Nothing, Primary Copy, Voting) (72 x 3 - 216).

Then, one can use multiversions or not (216 x 2 = 432). By considering

the multifarious variations of each technique, the number of distinct

algorithms is in the thousands.

To illustrate our framework, we describe some of the algorithms

that already have appeared in the literature.

The distributed locking algorithm proposed for System R* uses a 2PL

scheduler for rw and vw synchronization. The schedulers are distributed

at the DMs. Replication is handled by the do nothing approach.

Distributed INGRES uses a similar locking algorithm [STON79]. The

main difference is that distributed INGRES uses primary copy for repli-

cation.

SDD-l uses conservative T/O for rw scheduling and Thomas' write

rule for ww scheduling. The algorithm has distributed schedulers and

takes the do nothing approach to replication [BERNS0b]. SDD-1 also uses

conflict travh analysis, a technique for preanalyzing transactions to

determine which run-time conflicts need not be synchronized.

A method using 2PL for rw scheduling and Thomas' write rule for vw

scheduling is described in [BERN8lb]. Distributed schedulers and the do

nothing approach to replication were suggested. To ensure that the

locking order is consistent with the timestamp order, one can use a LUflE

Port .lock: Each message is timestamped with the local clock time when

it was sent; if a site receives a message with a timestamp, IS, greater

than its local clock time, the site pushes its clock ahead to TS. After

a transaction obtains all of its locks, it is assigned a timestamp using

the TV's local Lamport clock. Thomas' majority consensus algorithm was

Distributed Database System Deljner Handbook Pae 2-23
A Framework For Distributed Database Section 2
Concurrency Control

one of the first distributed concurrency control algorithms. It uses a

2PL certifier for rv scheduling and Thomas' write rule for ww schedul-

ing. Schedulers are distributed and voting is used for replication.

Bach transaction is assigned a timestamp from a Lamport clock when it is

certified. This ensures that the certification order (produced by rw

scheduling) is consistent with the timestamp order used for ww schedul-

ing.

Each of these algorithms is quite complex. A complete treatment of

each would be lengthy. Yet, by understanding the basic techniques and

how they can be correctly combined, we can explain the essentials of

each algorithm in a few sentences.

Performance of these algorithms has been studied in [LIN81,

LDNN82a, LINN82b, LINN82c, LINN83, GARC78, GARC79, GELE78]. A

comprehensive comparison of these algorithms can be found in Section 4.

Distributed Database System Designer Randbook Pae 3-1
Database Recovery Algorithms Sect ion 3

3. Database Recovery Algorithms

3.1 Introduction

A database system (DBS) processes read and write commands issued by

users' transactions to access the database. If a transaction fails in

midstream, or if the system fails, the database may be left in an

incorrect state. For example, if a money transfer transaction fails

after posting its debit but before posting its corresponding credit,

then the accounts are left unbalanced. The recovery algorithm of a DBS

avoids these incorrect states by ensuring that the database only

includes updates that are produced by transactions that execute to com-

pletion. This section is a survey of recovery algorithms for central-

ized and distributed DBSs.

Computer systems can fail in many ways, only some of which are han-

dled by DDS recovery algorithms. We limit our attention to clean

failures in which a transaction, the system, or, in the case of a dis-

tributed DRS, one site of the system, simply stops running. We do not

consider traitorous failures in which components continue to run but

perform incorrect actions (see [DOLE82, PEAS80]). We further limit

attention to soft failures in which the contents of main memory are

lost, but the contents of secondary memory (disk) remain intact. We do

not consider methods for recovering from disk failures, although methods

similar to those in this section apply (see [GRAY81, GRAY81, HARD79,

RARD82, LDID79. LOR177, VERl78]).

We describe a model of centralized DBS recovery in Section 3.2. We

present four cannonical types of centralized DBS recovery algorithms in

Sections 3.3 through 3.6. We describe recovery algorithms for distri-

buted DBSs in Section 3.7.

Page 3-2 Distributed Database System Designer Handbook
Section 3 Database Recovery Algorithms

3.2 A Model Of Centralized Database

System Recovery

We model a centralized database syste as a scheduler, a recovery

system, and storage.

Bm

operations

Iead/Vrte/Cesit/Abmet/ostart
operations

81STIN

rrnse -- j ------
aItab.

I I

Storane

The storage component consists of buffer storage and stable

storaie. Both are divided into physical Pate of equal and fixed size.

Buffer storage models main memory. Buffer storage is relatively fast,

but of limited capacity, and it doesn't survive system crashes. Stable

storage models disk memory and it is relatively slow, of (almost) unlim-

ited capacity, and it does survive crashes.

The database consists of a set of logcal 2Ae. We assume that

one physical copy (usually the most up-to-date copy) of each logical

page is stored in a portion of stable storage called the stable data-

bass. Other portions of stable storage may be used by the recovery sys-

tem as nonvolatile scratch space in ways that will be described later.

A tasaction is a program that can read from or write into the

database. A transaction can issue four types of commands: Read, Write,

Commit, and Abort. fted causes a page to be read from the database.

Distributed Database System Designer Handbook Pe -
Database Recovery Algorithms Section 3

Write causes a new copy of a logical page to be written into the data-

base. Commit tells the system that the transaction has terminated and

that all of its updated pages should be pnagnaoi reflected in the

database. Abort tells the system that the transaction has terminated

abnormally and that the pages it wrote into should be returned to their

previous state. (Commit and Abort may be issued by a process control-

ling the transaction, rather than by the transaction itself.) A transac-

tion can have only one Commit or Abort processed.

A transaction is active if it has begun executing but has not yet

had its Commit or Abort processed.

Notation: Bach command is Subscripted by the transaction that

issued it. For example, Roadi(Pj) is a Read issued by transaction Ti on

page J.

Theo Scheduler

The scheduler controls the order in which Reads, Writes. Commits,

and Aborts are passed to the recovery system. Although the scheduler

allows commands from different transactions to be interleaved, it

guarantees that the resulting execution is sorializabli. An execution

is serializable if the effect is exactly the same as if the transactions

had been executed serially, one after the next, with no concurrency at

all. Many scheduling algorithms for attaining serializability are dis-

cussed in Section 2. Versions of all of them are compatible with the

recovery algorithms described in this section.

The scheduler also guarantees that the execution is recoverable.

An execution is recoverable if, for each transaction Ti. Ti is not com-

mitted until, for each page read by Ti. the transaction that last wrote

that page is committed.

Recoverability is needed to avoid errors such as the following.

Suppose Ti reads a page Pk last written by T (which is still active).

Ti writes another page Pl' and commits. Now, suppose T fails and is

aborted. Aborting Tj causes its write on Pk to be undone, thereby

rendering Ti's input invalid. But, since Ti cannot be aborted after

having boon committed, Ti's updates to P, must remain in the databaseI

Page 3-4 Distributed Database System Designer Iandbc k
Section 3 Database Becovery AlgoritkAs

even though its input Pk is invalid.

For definitions, we assume that the scheduler uses ziuia-12xil iXi

phase Jocking (I) [EAGE81]. Before outputting Readi(Pj) (reap.

Writei(Pj)), the scheduler sets a read lock (reap. write lock) on page

P. for transaction Ti. Two transactions cannot concurrently own con-

flictina locks on the same page, where read locks conflict with write

locks and write locks conflict with read and write locks. If the

scheduler receives an operation for which it can't set the corresponding

lock, it delays the operation until the lock can be set.

When the scheduler receives a Commit, or an Aborti , it forwards the

operation directly to the recovery system. When the recovery system

acknowledges that the operation has been processed, the scheduler then

releases all the locks held by Ti.

Two-phase locking ensures serializability (see [BERN82, ESVA76] for

proofs). The version of 2PL presented above also ensures recoverability

by requiring that a transaction hold its write locks until its Commit or

Abort is processed.

310 Recovery System

The recovery system processes the Read, Write, Commit, and Abort

commands it receives from the scheduler. It also handles system

failures.

A system failure can interrupt the DBS at any moment. It causes

all processing to stop and the contents of buffer storage to be lost.

After the system recovers, transactions that were active at the time of

the failure cannot continue executing because the contents of main

memory are now useless. Thus, after the failure and before processing

any other commands, the recovery system processes the restax t command,

whose effect is to abort all active transactions.

To handle failures properly, it is essential that the Commit com-

sand be implemented in a single instruction, normally a page write. If

it were to require more than one instruction, a system failure could

interrupt a partially completed Commit, making it ambiguous whether the

transaction should be aborted during restart. Said differently, each

Distributed Database System Designer Uandbook Pate 3-5
Database Recovery Alsorithms Sect ion 3

transaction must always be in one of three states: active, committed, or

aborted, and each state change must be implemented by an atomic instruc-

tion execution.

There are several types of information that a recovery algorithm

stores in stable scratch space. It may store the identifiers of tran-

sactions that have committed, called the commit JWjs. In this case, the

single instruction that implements Commiti is usually a write that adds

Ti to the commit list. The recovery algorithm also may store a list of

identifiers of transactions that are active, called the active list, and

those that have aborted, called the abort list.

Recovery algorithms often store copies of pages that eore recently

written on an audit trail (sometimes called a Journal or loA). For each

write processed by the recovery algorithm, the audit trail may contain

the identifier of the transaction that performed the write, a copy of

the newly written page (called an after-image), and a copy of the physi-

cal page in the stable database that was overwritten by the write

(called a bLqore-IBM). Different algorithms vary considerably in the

information they keep on the audit trail and in how they structure that

information.

NPAR A" 12A2

Recovery algorithms also differ in the time at which they write

pages into the stable database. They may perform such writes before,

concurrently with, or after the atomic instruction that commits the

transaction that last wrote those pages.

Suppose that a page written by an active transaction is written

into the stable database before the transaction commits. If the tran-

saction aborts due to a system or transaction failure, the recovery

algorithm must 31o the write by restoring the previous copy (before-

image) of the page.

Suppose that a page written by an active transaction is not written

into the stable database before the transaction commits. If a system

failure occurs after the transaction commits but before the page is

rJ

PaSe 3-6 Distributed Database Syste Designer Handbook
Section 3 Database Recovery Algorithms

writton into the stable database, the recovery algorithm must Zodo2 the

write by moving the page to the stable database.

In eary recovery algorithm, the after-images produced by a tran-

saction must be written to stable storage (the database or scratch

space) before the transaction commits. This is called the commit xii.

If it is violated, a system failure shortly after a transaction Ti com-

mits could leave the recovery algorithm with no stable copy of Ti's

after-inages, making it impossible to redo Ti.

Every recovery algorithm must also obey the o5 ahead Z.RU : if an

after-image is written to the stable database before the transaction

that wrote it commits, then the before-image of that page must first be

written to the audit trail. Otherwise, a system failure could occur

after the after-image is in the stable database but before the before-

image is in the audit trail, in which case the write could not be

undone.

Categorization oI Recovery Algorithms

Recovery algorithms can be categorized based on the timing of

updates to the stable database. There are four types of recovery algo-

rithms Some may require undo but not redo, redo but not undo, both undo

and redo, and neither undo nor redo. These types of algorithms are

described in Sections 3.3-3.6.

3.3 Algorithms That Undo But Don't Redo

For each type of recovery algorithm, we present a generic algorithm

based on our database system model, and then we list example implementa-

tions. We describe this generic version by explaining how each command

is processed. In all of the algorithms, the first command processed for

Ti should add Ti to the active list.

For each operation, we mark by '(Ack)' the point at which the

recovery system can acknowledge to the scheduler that the operation has

been completed. Sometimes the operation has additional work to do after

the acknowledgement is sent.

Distributed Database System Designer Handbook Page 3-7
Database Recovery Algorithms Section 3

Readi(P). Copy P from the stable database into a buffer. (Ack)

Writei(P). Copy the before-imase of P. (from the stable database)

to the audit trail. (Ack) Thene (after the disk acknowledges the write

in the audit trail), write the new copy of P into the stable database.

Commit i, Make sure all pages written by Ti are in the stable data-

base. Then write Ti into the commit list. {Ack) Then delete it from

the active list.

Abort1 . Write Ti into the abort list. Then undo all of Ti's

writes by reading their before-images from the audit trail and writing

them back into the stable database. (Ack) Then, delete Ti from the

active list.

Restart. Process Abort i for each Ti on the active list. (Ack)

In this algorithm, all pages written by a transaction are written

into the stable database before the transaction commits. Thus, redo is

never needed, but an abort may require undo.

It is actually not necessary to write an after-image into the

stable database imediately after the before-image is written into the

audit trail. The after-imaSe could be left in buffer storage for

awhile, provided it is written to the stable database before the tran-

saction commits as required by the commit rule.

This algorithm obeys the log ahead rule in processing Writei(Pj);

the before-image of Pj is written to the audit trail before the after-

image is written to the stable database.

The order in which writes are applied to stable storage is quite

sensitive in this (and most other) recovery algorithms. In this algo-

rithm, for example, in processing commiti it is incorrect to delete Ti

from the active list before writing it into the commit list.

Remember that a system failure can occur during the processing of a

Restart. So Restart must also take care tc reload the current active

0 In every algorithm, we use *then' to mean 'wait for the previous step
to complete before proceeding to the next step'.

"'--4.

Page 3-8 Distributed Database System Designer Bandbook
Section 3 Database Recovery Algorithms

list into stable storage in order that it will be resilient to an system

failure (followed by another Restart).

After Commit i or Abort i has been processed, the audit trail

copies of pages written by Ti are no longer needed and can be returned

to free space. The algorithm for garbage collecting these audit trail

pages depends principally on the audit trail's date structure. We will

not discuss garbage collection issues for any of the recovery methods

described in this section.

Phe Prime Alaorithm

This type of recovery algorithm is used in a database system pro-

duct offered by Prime Computers (DUB082], and in the DDU database system

being developed at CCA [RIES82].

In Prime's algorithm, each page in the stable database has a

pointer to its before-image in the audit trail. Each before-image in

the audit trail points, in turn, to the next older before-image of the

same page. Also, each physical page carries the transaction identifier

of the transaction that wrote that particular copy. And, for each

active transaction there is a convenient way to obtain a list of all

pages it has written.

The page pointers are used for two purposes. First, to process an

Abort, the pointer in each stable database page makes it easy to undo

the aborted transaction's writes. Second, they help avoid concurrency

control conflicts between queries and updates, as follows.

A auery is a read-only transaction. Reads issued by queries are

not locked in the scheduler but are passed directly to the recovery sys-

tem (without being delayed). When the recovery algorithm receives the

first read issued by a query Ti , say Readi(Pj), it reads the commit list

and then selects the newest copy on the chained list of P Copies whose

transaction identifier is on the commit list. Subsequent reads by Ti

are processed in the same way, using the copy of the commit list that

was read when the first Readi was processed. By reading in this way,

queries see a consistent copy of the database, yet they do not set read

locks that might delay update transactions.

Distributed Database System Designer Handbook Page 3-9
Database Recovery Algorithms Section 3

Another undo/no-redo algorithm is described in [RAPP75].

3.4 Algorithms That Redo But Don't Undo

In the generic algorithm, each command is processed as follows.

Readi(P). If Ti previously wrote Pi, then copy the after-image of

P. into a buffer. Otherwise, copy P3 from the stable database into a

buffer. (Ack)

Writei(P.). Write the new value of Pj into the audit trail. (Ack]

Commit i. Write Ti into the commit list. Then for each page writ-

ten by Ti, copy the after-image from the audit trail into the stable

database. (Ack) Then delete Ti from the active list.

Aborti. Write T i into the abort list. {Ack) Then delete it from

the active list.

Restart. For each Ti that is on the active list but not on the

commit list, process Abort.. [Ack) For each Tj on the active list and

the commit list, process Commit.

In this algorithm, pages written by a transaction ate not written

into the stable database until after the transaction commits. Thus,

undo is never needed, but a Restart may require redo.

This algorithm cbeys the commit rule because the after-image of

pages written by Ti are stored on the audit trail before Ti commits. It

also obeys the log ahead rule, since no after-image of a transaction is

written into the stable database before it commits.

Implementations of this algorithm are described in [LAMP76,

Mm A79]. This type of recovery algorithm is used in the INGRES Database

System (STOH79] and in SDD-l [BERN80b].

Page 3-10 Distributed Database System Designer Handbook
Section 3 Database Recovery Algorithms

3.5 Algorithms That Redo And Undo

In this algorithm, commands are processed as follows.

Readi(Pj). If Ti previously wrote P., then copy the after-image of

P. into a buffer. Otherwise, copy P. from the stable database into a

buffer. (Ack)

Writei(P). Copy the before-image and the after-image of P. into

the audit trail. (Ack) Then, sometime later, write the after-image into

the stable database.

Commit i. Write T i into the commit list. Then, for each page writ-

ten by T i, write the after-image into the stable database (if it hasn't

already been done). (Ack) Then, delete Ti from the active list.

Aborti . Write Ti into the abort list. Then, for each page written

by T i, if its after-image has already been written into the stable data-

base, write its before-image into the stable database. (Ack) Then

delete Ti from the active list.

Restart. For each T i on the active list and the commit list, pro-

cess Commit1 . For each Ti on the active list but not on the commit

list, process Abort i . (Ack)

Note that Abort may require undo and Restart may require redo.

This algorithm obeys the commit rule, since the after-image of each

page written by T i is written into the audit trail before Ti commits.

It also obeys the log ahead rule, since the before-image of each page

written by T i is written into the stable database.

One can improve the performance of this algorithm by using a varia-

tion proposed by Gray [GRAY81]. Gray's algorithm processes commands as

follows.

Readi(Pj). If Ti previously wrote P., check to see if the after-

image is in buffer storage. If not, copy P. from the stable database to

a buffeT. {Ack)

Writei (P). Copy the before-image of P into buffer storage unless

it is already there. Write the after-image of Pj into buffer storage;

Distributed Database System Designer Iandbook Pae 3-9
Database Recovery Algorithms Sect ion 3

Another uado/no-redo algorithm is described in [RAPP7T].

3.4 Algorithms That Redo But Don't Undo

In the generic algorithm, each command is processed as follows.

Readi(P.). If Ti previously wrote P then copy the after-image of

P. into a buffer. Otherwise, copy Pj from the stable database into a

buffer. {Ack)

Vritei(Pj). Write the new value of P. into the audit trail. (Ack]

Commiti. Write Ti into the *omit list. hen for each page writ-

ton by Ti. copy the after-image from the audit trail into the stable

database. (Ack) Then delete Ti from the active list.

Aborti. Write Ti into the abort list. {Ack) Then delete it from

the active list.

Restart. For each Ti that is on the active list but not on the

commit list, process Aborti. (Ack) For each T on the active list and

the commit list, process Commit .

In this algorithm, pages written by a transaction are not written

into the stable database until after the transaction commits. Thus,

undo is never needed, but a Restart may require redo.

This algorithm obeys the commit rule because the after-imaSe of

pages written by Ti are stored on the audit trail before Ti commits. It

also obeys the log ahead rule, since no after-image of a transaction is

written into the stable database before it commits.

Implementations of this algorithm are described in [LANP76,

NB1A79]. This type of recovery algorithm is used in the INGRS Database

System [STOt79] and in SDD-1 [BERN80b].

Distributed Database System Designer Handbook Page 3-11
Database Recovery Algorithms Section 3

this step must not overwrite the before-image. (Ack) Sometime later,

write the before-imase into the audit trail, leaving a copy of the

after-image in buffer storage. The after-image may be written into the

stable database any time after the before-image is written into the

audit trail. Once the after-imase is written both to the audit trail

and the stable database, it may be removed from buffer storage.

Commiti. After all the after-images of pages written by Ti have

been written into the audit trail, write Ti into the commit list. {Ack]

Aborti and Restart are the same as the generic algorithm.

This algorithm obeys the log ahead rule because the before-image of

each page is written in the audit trail before the after-image is writ-

ten in the stable database. The commit rule is also satisfied since

Ti's after-images are written into the audit trail before T i commits.

When all after-images written by Ti have been written into the

stable database, Ti can be deleted from the active list. This tells

Restart that Ti does not need to be redone.

The main benefit of this algorithm is that the decision to write

pages into stable storage is usually left to the database system's

buffer management algorithm. The recovery algorithm writes into stable

storage only when the commit or log ahead rule requires it.

A detailed implementation of this algorithm that incorporates

checkpoints, and in which transactions write records instead of entire

pages, appears in [LIND79].

3.6 Algorithms That Don't Undo Or Redo

In the generic algorithm, each command is processed as follows.

Readi(Pj). If Ti previously wrote Pi, then copy the after-image of

Pj into a buffer. Otherwise, copy Pj from the stable database into a

buffer. (Ack)

Page 3-12 Distributed Database System Designer Handbook
Section 3 Database Recovery Algorithms

Writei(P3). Write the after-image of P. into the audit trail.

(Ack)

Commit i. In a single instruction, write the after-images of all

pages written by Ti into the stable database and delete Ti from the

active list. (Ack)

Abort i. Write T i into the abort list. (Acki Then delete it from

the active list.

Restart. For each T1 on the active list, process Aborti. (Ack)

Unfortunately, this description isn't very informative because it

relies on a magical instruction that implements commit without even

using a commit list. Notice that if the magical instruction is avail-

able, then undo isn't needed because a transaction's after-images are

not written into the stable database before it commits, and redo isn't

needed because a transaction's after-images are written into the stable

database in the instruction that commits the transaction.

We will describe an implementation of the Commit instruction simi-

lar to one presented in [LORI77].

Lorie's Shadow Pae Altorithm

Assume that the stable database is partitioned into f/le$

(FI ... F 2), each of which is a sequence of logical pages. Each file,
F., has a paze table, PTj, whose entries point to the pages of F That

is, PT.[k3] contains the address of the k-th page of Fj; this page is

denoted Pjk" Assume that each page table fits on one page in the stable

database. The stable database also contains in a fixed address a master

record, X, that points to the n page tables; X[jJ contains the address

of PTr.

Abort and Restart are processed as in the generic algorithm. Read,

Write, and Commit are processed as follows.

For each file, Fi, the first Read or Write that Ti issues on a page

of F. causes the recovery algorithm to make a copy of PTJ in buffer

storage, denoted PTji. For each page P that Ti writes, PTi[k] will

Distributed Database System Designer Handbook Page 3-13
Database Recovery Algorithms Section 3

point to the after-imag, of that page in the audit trail. (The other

entries in PTji are irrelevant.)

Readi(Pjk). If Ti previously wrote P. then copy the after-image

of P from address PTjk[k3] into a buffer. Otherwise, use K to find PTj

and copy Pjk from address PT[k3] in the stable database into a buffer.

{Ack)

Writei(P). Write the now copy of Pik into the audit trail. Then

assign PFir[k] the address of that audit trail page. (Ack)

Commit i . Copy N into buffer storage. For each file F. that Ti

wrote into, use (the buffer copy of) N to find PTj and copy it into an

empty page of buffer storage. (There are now two page tables for F

connected to Ti: the buffer copy of PT. that was just read, and Prji.)

For each page Pjk that was written by Ti. assign to the buffer copy of

PT.[k33 the contents of PiJi[k]. Then, write Fr. into a new location in

scratch space; denote this now copy of PT. by M. Then. for each F.

that Ti wrote into, assign to (the buffer copy of) /[j3] the address of

MT . Then write I back to its fixed address in stable storage. {Ack)

The commit algorithm prepares a scratch copy of the page table

(PM). This is accomplished by assigning to X(j) the address of PT; for

each file F that T i wrote. By writing K back to the stable database,

the old copies of the page table (PTj) are replaced by the new ones
(75).

The instruction that commits Ti is the one that writes the updated

N back into the stable database. Before this write, any read will use

the old copy of M to read the before-image of any page written by Ti.

After this write, it will read the after-image of any such page.

The recovery algorithm can commit only one transaction at a time.

That is, Commit is a critical section. If two transactions were

(incorrectly) to commit concurrently, each transaction might read a copy

of PT into buffer storage, change the pointers to pages it wrote, and

write tkat copy of PT to the audit trail. Thus, two copies of PT

would exist. Whichever transaction updated N first would lose its

updates to PTj, since they would be overwritten by the second transac-

Page 3-14 Distributed Database System Designer Handbook
Section 3 Database Recovery Algorithms

tion when it installed it8 copy of PT by updating M.

A version of Loris's algorithm is implemented in System R's

recovery manager [GRAY81].

3.7 Recovery In A Distributed Database System

A distributed database system (DDBS) consists of a set of sites

connected by a network. Each transaction can read or write data stored

at any of the sites.

We model a DDBS by a set of proresses called data modules (DJs) and

transaction modules (Tls). A DUf is a centralized database system as

defined in Section 3.2. It processes leads and Writes on pages stored

at that DM. It also processes Commits and Aborts, which permanently

install or undo the writes of a transaction at that DI.

A TU interfaces transactions and Dis. Each transaction, T i, sub-

mits commands to one TH, say Tha. To process Read i or Write i , Tha sim-

ply sends the command to the DI that stores the data being read or writ-

ten. Let Active i be the DMs at which Ti was active. To process Aborti ,

Ta must ensure that every DIU in Activei processes Abort i. To process

Commit i, Ta should try to ensure that every DUI in Activei processes

Commiti.

Unfortunately, Ths and DNs may fail at unpredictable times. TIs

must process commands so that such failures never cause it to produce

incorrect results.

We assume that process (i.e., TN and DM) failures are 'clean'. If

a process does not produce an expected response to a message within a

timeout period, then the process has .rell failed. If one process

believes another process is down, then jL. processes believe that the

process is down. And, when a process recovers, it recognizes that it

has just recovered from a failure and runs a special 'reintegration pro-

tocol'.-- Mechanisms that support these assumptions are beyond the scope

of this section. (See [ATTA82, RAIO0, PAIIS2. WALT82].)

Distributed Database System Designer Handbook Page 3-15
Database Recovery Algorithms Section 3

Each TU keeps an active list, commit list, and abort list in stable

storage. And, for each Ti on the active list, it maintains Active, in

stable storage. When it receives a Read or Write from Ti, it sends the

command to the appropriate DU and adds that DU to Active i. For the

first such Read or Write, the 71 also adds Ti to its active list. It

processes Abort and Commit as follows.

Aborti. Add T, to the abort list. Then, send Aborti to each DI in

Active. Wait for every DM to acknowledge that it processed Abort i.

(Ack) Delete Ti from the active list.

Commit1 . Add Ti to the commit list. Then, send Commit i to each D

in Active i . Wait for every DI to acknowledge that it processed Commit i .

(Ack) Delete Ti from the active list.

If a TN fails and later restarts, then it processes a Restart in

the usual way. For each Ti on both the commit list and the active list,

process Commiti. For all other Ti on the active list, process Abort i.

If a TN, say T1a, discovers that a DI, say D/b, has failed, then it

normally processes Aborti for each Ti that has D/b in Activei. But what

if DU b is in Activei and TN has already sent Commit i to other DIs in

Activei? In this case it can't abort Ti because Ti already may be com-

mitted at some D/s. Instead, it must wait for D/b to recover. When it

does, TMs sends Commiti to DUb, too.

3.8 Two-Phase Commit

Each TM must obey the commit rule. That is, it must not send

Commiti to any DI until every DI in Activei has Ti's after-images on

stable storage. Otherwise, a DN in Activei may:

1. Fail before receiving Commit i

2. Upon recovering, discover from TMs that Ti has committed

3. But be unable to process Commiti because it lost some of Ti's

after-images due to the failure

Page 3-16 Distributed Database System Designer Handbook
Section 3 Database Recovery Algorithms

To obey the commit rule and thereby prevent (3), TX& can use the

_o-L-lSAM commit protocol for processing Commit commands [LAMP76].

Phase one begins when TMa receives Commit,. It then sends a command

called Endi to each DU in kctivei. A 1U processes Endi by first ensur-

ing that Ti's after-images at that DU are on stable storage and then

sending an acknowledgement to Ta . When 11, has received the ack-

nowledgement from every DX in Active i , phase one is done. fAck) In

phase two, T a sends Commiti to each DN.

Since TMha does not send Commit i to amj DU until every DUI has ack-

nowledged Endi, no DI in Activei will process Commit i until every DN has

Ti's after-image on stable storage.

If a DX, say l3 b , fails before acknowledging Endi, then TX, won't

leave phase one. Since TX, cannot be sure that DN b will be able to

process Commiti when it recovers, 1Na must either wait for Db to

recover or abort Ti by sending Aborti to every DU in Active i . In prac-

tice, Tha simply waits a prespecified timeout period after distributing

the Endi's; if it hasn't received an acknowledgement of some Endi by

this time, it assumes the DU has failed and aborts Ti.

Until a DI processes End i, it may unilaterally decide to abort T i

by sending an Abort, command to T7a. Once a DU acknowledges Endi, it

loses its right to unilaterally abort T i, and may only abort T i if

directed to do so by Tha"

3.9 Three-Phase Commit

The TI algorithm presented above has a serious disadvantage. Sup-

pose TX, sends Endi to D
1 b, Db acknowledges Endi, and then TVa fails.

Since DUb doesn't know whether Ti will commit or abort, it has to wait

for Ia to recover. In particular, it must hold Ti's locks until Ila

recovers. If The is supervising many active transactions, large por-

tions of the database may be locked and unavailable until 71/ recovers.

We can avoid this problem by providing each TV with one or more

backup TMI. If a TI fails, the backups can take over its functions.

Di stefti* ICfdal VS%$ 9 esigner Handbook Page 3-17
9dtsbiaseW*9fij RJ611da~f Eli Sction 3

One such algorithm is .&kxi-gkua igmit ISKEE8sa. SKEE82a,

SUE82b. SpEElb]. Each backup for TV5 maintains a commit list. CLa*

To process Comiti. TN. behaves as follows.

I. TN Sends Endi to each DU in Activei. Then it waits for all DR$ to
acknowledge their Endi's.

2. TM& sends a command called Precommiti. to each backup TN. A TN

processes Precomiti by adding Ti to its copy of Ca * and then send-

Ing an acknowledgement to Th. TM, waits for all backups to ack-

nowledge Precommiti.

. Iva sends Commiti to each DI in Activei.

Essentially, this is the two-phase commit protocol with a new phase

added (Step 2).

If a backup TM fails. TMa can ignore the failure if the number of

backups is still acceptably large; otherwise, it should acquire another

backup TM to replace the failed one.

Suppose 7ha fails. When the backups discover the failure, they

elect one of their member TM*, sa 7W1%~ to replace TM5. After TMb is

elected, every other backup TM sends its copy of CL8 to TMb. TMb takes

the union of those copies and distributes the result to other backups.

This becomes everyone's copy of CL.. When this process is complete, =lb

tells all D~a that it has taken over U.s functions.

If a DK wants to know what happened to a particular transaction,

Tit that was supervised by INS# it asks T3Lb. If Ti is in Thb's a.

then T~b tells the DK to commit Ti; otherwise, it tells the DU to abort

Ti. Thus. a transaction that was supervised by IM~ is committed If and

only if it reached the second phase of three-phase commit and at least

one of its precommits reached a backup TM (that didn't fail).

The algorithm for electing a backup TM to replace Tka is easy, as

long as none of the backups fail or recover from failure during the

electioi. Assume each TN has a unique Identifier. To elect a replace-

ment for TM5 , each backup exchange* its identifier with every other

backup. The IN with the largest identifier vins the election and takes

Page 3-18 Distributed DatasUt uJk= %?* jq%
Section 3 Da, .e qrq F

Over.

If backup TMs fail or recover from failure during the oeecti£03, tGO

above algorithm can misbehave. Each of two TMs can conclude that it won

the election. Algorithms to prevent this behavior are discussed *n

[GARC82. SKEESla].

It is possible that TV, and all of its backups fail during a short

time period - too short for replacement backups to be acquired. This

is called a total failure of T3a; no T1 can ever take over its function.

Ds must wait until TNa and enough of its backups have recovered so that

the correct status of Ta transactions can be determined. Algorithms

for recovering after total failure are discussed in [SKEE8l].

Many variations on three- phase commit protocols have been proposed

and analyzed. See [ALSB78, ALBS76, OD0P82, EAGEaI. AMO, LMP78,

IMEA78, IRAI82].

3.10 Replicated Data

If a DU fails, transactions that need the failed DN'8 data must

wait for the DI to recover. To avoid this delay, the DBS can realicate

data; that is. it can store parts of the database at more than one DM.

If one copy is unavailable due to a DU failure, other copies can be used

instead.

Many concurrency control algorithms are known for keeping multiple

copies of each page mutually consistent. However, even if concurrency

control is performed correctly, failures can cause transactions to mal-

function.

For example, suppose P1 has copies PlS and Plb at Dua and IMb

(resp.), and P2 has copies P2c and P2d at D!C and DMd. T1 reads P, and

writes P2 ; T2 reads P2 and writes P1. Replicated data is handled by

the 'intuitive' algorithm: to read data, read any copy; to write data,

write all available copies. The following execution obeys these rules,

yet it is incorrect.

Distributed Database System Designer Handbook Pago 3-19
Database Recovery Algorithms Section 3

Readi(Pia) Dfd-fails Iritel(P2 c)

Read 2 (P2d) D5a-fails Vrite2 (Plb)

This execution is incorrect because T, reads (a copy of) P1 before 2

writes P1. while T2 reads (a copy of) P2 before
T , writes P2. The first

condition means that T , appears to precede T 2 1 while the second condi-

tion means that T2 appears to precede
T . These conditions cannot both

hold in a serial execution, and so the given execution is incorrect.

Algorithms for correctly processing commands on replicated data in

the presence of DU failures appear in [ALSB78, ALBS76, WOOP82, EAGE81,

GIFF79, RANESO, MENA78, TBO79J. No consensus on the best approach to

this problem has yet emerged.

Distributed Database System Designer Handbook Page 4-1
Performance of Distributed Concurrency Control Section 4

4. Performance of Distributed Concurrency Control

Many factors effect the performance of a distributed concurrency

algorithm:

1. 10 delay,

2. communication delay,

3. ratio of read-only to write transactions,

4. database size, transaction size,

5. system multiprogramming level,

6. distribution and replication of the database,

7. overhead of deadlock detection,

8. and system load, defined as the product of transaction size and mul-
tiprogramming level divided by the database size.

Our simulation study of the performance of distributed concurrency con-

trol algorithms shows that four of these factors have more significant

impact than the others: 10 delay, communication delay, transaction size,

and system load. Hence we divide our simulation results into groups and

discuss them separately by classifying the system environment as either

1_-bound or communication bound, and as either short transaction loaded

or long transaction loaded. We consider a system to be 10 bound if

queuing for 10 or CPU resources is a more significant problem than queu-

ing for communication channel; and we consider a system to be communica-

tion bound if queuing for communication channel is a more significant

problem than queuing for 10 and CPU resources. We consider a system to

be short transaction loaded if the average number of data items

requested by the transactions (or transaction size) is less than Q. %

of the database. The system is long transaction loaded if the average

is larger than Q.2% of the database. If the average is between 0.05%

and 0.2% of the database, the classification of the system as short

transaction loaded or long transaction loaded depends on the system

load. Details of the classification can be found in Figure 4.1.

Thus we-present four categories of system environments: short transac-

tion loaded and 10 bound (S1), short transaction loaded and communica-

tion bound (SCM), long transaction loaded and 10 bound (LIe), and long

Page 4-2 Distributed Database System Designer Handbook
Section 4 Performance of Distributed Concurrency Control

System Load 1 0% > 10%/
Trans ize

< 0.05% Short Short
0.05%<0.2% Short Long
> 0.2% Long Long

Trans Size: Average number of data items requested by a
transaction as a percentage of the database size.

System Load: Trans Size multiplied by the multiprogramming
level.

Database size: Total number of data items in the database.

Figure 4.1 System Classification
(Short Loaded or Long Loaded)

transaction loaded and communication bound (LCM). For each of these

four environments, we compare the performance of various concurrency

control algorithms, taking into consideration the factors that are not

used to classify the system environment - i.e. multiprogramming level,

ratio of read-only to write transactions, distribution and replication

of the database.

We first describe, in Section 4.1, the distributed DBMS model that

we use to evaluate these algorithms. We then define and describe, in

Section 4.2, the concurrency control algorithms that we evaluate. We

compare these algorithms in Section 4.3.1 through 4.3.4 for each of the

four environments. In Section 4.4 we summarize the results of Section

4. Details of the simulation results can be found in the Appendix. e

To use this section as a design guide, a system designer must first

classify his system environment, using the following three parameters.

First, he must decide whether his system environment is 10 bound or com-

munication bound. Second, he must estimate the average number of data

items, as a percentage of the total number of data items in the data-

base, requested by a transaction (transaction size). Third, he must

estimate the average system load, which is the product of the transac-

tion size and the multiprogramming level of the system (number of tran-

sactions running concurrently). Using these three parameters and Figure
4.1, the designer can find his system classification. For each classif-

ication, he can find the comparison of various distributed concurrency

control algorithms in Section 4.3.1 through Section 4.3.4.

Distributed Database System Designer Handbook Page 4-3
Performance of Distributed Concurrency Control Section 4

4.1 Performance Model

We assume that there are two kinds of transactions: read-only tran-

sactions and write transactions (update transactions). Write transac-

tions always read what they write, and write what they read. This

assumption may seem restrictive, but it is a good approximation of real

applications. Our earlier simulation results [LIN81a] showed that the

total number of requests and the ratio of read-only requests to write

requests active at any moment in the system have much greater impact on

the system performance than the ratio of read-only to write transac-

tions. Moreover our analysis shows that a more general assumption of

transactions would not favor any concurrency control algorithm; thus for

performance comparison of the algorithms, this assumption would not dis-

tort the results. To use the results of this section to evaluate the

performance of a system that has transactions reading more than writing,

the ratio of read-only to write transactions in the system can be

adjusted upward.

A read-only transaction consists of a sequence of read-only

requests, and each request reads a data item. A write transaction con-

sists of a sequence of write requests (update requests), followed by a

two-phase commit. Requests from a transaction are processed sequen-

tially; another request is initiated only after the previous one has

been successfully processed.

As described in Section 2, a distributed DBUS consists of TIs,

schedulers, and DMs. Each transaction is managed by a TM, which

sequences its requests and sends them to the appropriate scheduler to be

processed. If the scheduler site is different from the Ti site, a co r

munication delay is incurred.

If a request is read-only, the scheduler requests a read lock for

the requested data item (assuming that a two phase locking algorithm is

used). Depending on the particular concurrency control algorithm used,

some lock managers may grant the lock without checking whether the

requestconflicts with another transaction. Other lock managers may

check for the conflict. If a conflict is found, the read-only request

waits and incurs a blocking dela . Depending on the concurrency control

Page 4-4 Distributed Database System Designer Handbook
Section 4 Performance of Distributed Concurrency Control

algorithm used, the scheduler may initiate a deadlock detection when

blocking occurs, thus incurring processing and possibly communication

overhead. When the lock for the requested data item is obtained, the

scheduler sends the read-only request to the appropriate DM. and the

read-only request incurs a processing delay. A read-only transaction

ends after all its requests have been successfully processed.

A write request is processed in a manner similar to a read request,

except that successful processing of all write requests of a transaction

is always followed by a two-phase commit, and a write transaction ends

after the two-phase commit is successfully processed (two-phase commit

is the only reliability algorithm that we use in our simulation of con-

currency control algorithm).

If timestamp based algorithms are used, a timestamp is assigned to

each transaction, and requests from the transaction inherit the transac-

tion timestamp. Each data item also has read and write timestamps that

record the timestamps of the transactions that last read from (or write

into) the data item. For all the timestamp algorithms that we have

evaluated, the scheduler always resides at the site of a DM, and a

request is always sent to the scheduler at the site where the data is to

be accessed. When a scheduler receives a request, it compares the

timestamp of the request with the read and write timestamp(s) of the

data item, and it may or may not delay the request, depending on the

particular algorithm used. If the request is not blocked, it is sent to

the DM at the scheduler site, and the request incurs a processing delay.

We simulate both 10 bound and communication bound system environ-

ments. In the 10 bound environment, we explicitly simulate queuing for

local processing, which combines cpu and 10 processing. We differen-

tiate between local processing of simple messages, such as lock request,

lock release, and deadlock detection, and local processing of data

requests. The latter needs more processing time than the former. In

the 10 bound environment, we do not simulate queuing for communication

channels. Communication delay is simply simulated by a delay drawn from

a probabilistic distribution.

Distributed Database System Designer fandbook Page 4-1
Performance of Distributed Concurrency Control Section 4

In the communication bound environment, we explicitly simulate

queuing for communication channels, but not for local processing

resources. In some cases, we differentiate between message and data

transmission. The latter takes longer than the former. We simulate

local delay (combining 10 and cpu processing) by drawing a random number

from a probabilistic distribution.

The performance parameters that we use to compare distributed con-

currency control algorithms include read throughput, write throughput,

average read response time, and averate write response time. Read

throughput is the number of read-only requests successfully completed

per time unit; read-only requests processed and subsequently aborted are

not included. The write throughput is similarly defined. Read response

time is measured from the time a read-only request is initiated by a TJ

to the time when the next read-only request of the same transaction is

initiated by the same TM. Thus, it may include communication delay,

blocking delay, and processing delay. Average read response time aver-

ages over the response times of all successfully completed read-only

requests. Average write response time is similarly computed.

In addition to blocking delay, communication delay, and processing

delay, other factors also affect average response times and throughputs

(e.g., transaction abortion, deadlock detection, and multiple versions

of data). The concurrency control algorithms evaluated in this section

can be differentiated by the way they trade off these factors. Some

algorithms trade longer blocking delay for fewer transaction abortions,

and others trade reversely. Some trade more communication delay for

less blocking delay, and others trade reversely. We describe these

algorithms in the next section. In Section 4.3, based on the total

throughput, we compare and rank these algorithms. Detailed data of the

performance parameters can be found in the Appendix.

Page 4-6 Distributed Database System Designer Handbook
Section 4 Performance of Distributed Concurrency Control

4.2 Description of Algorithms

The algorithms that we will consider are listed below, Selection

of these algorithms is based on our earlier heuristic evaluation

reported in [BERN81l]. The selected algorithms were shown to perform

better than the algorithms discarded. Names of some algorithms are

linked by the conjunctive 'and' (e.g. Primary Site and Primary Site).

The term before the conjunctive describes the method used for read

requests, and the term after the conjunctive describes the method used

for write requests. These algorithms are described briefly in this sec-

tion and summarized in Figure 4.2. Details of these algorithms can be

found in the references.

1. Primary Site and Primary Site Two Phase Locking (C-C)

2. Primary Copy and Primary Copy Two Phase Locking (P-P)

3. Basic and Basic Two Phase Locking (B-B)

4. Basic and Primary Copy Two Phase Locking (B-P)

5. Basic and Primary Site Two Phase Locking (B-C)

6. DDM Multiple Version and Optimistic Two Phase Locking (DDM)

7. Basic and Optimistic Two Phase Locking (Opm)

8. Majority Consensus Timestamp (Maj)

9. Wait-Die Two Phase Locking (Die)

10. Basic Timestamp (BaT)

11. Multiple Version Timestamp (MvT)

12. Dynamic Timestamp (Dyn)

The SDD-l algorithm is not explicitly covered because the Dynamic

Timestamp algorithm is an improved version of it ([LIN79, [LIN81).

Neither is the Conservative Timestamp algorithm covered, because this

algorithm essentially executes transactions serially in timestamp order.

Thus it can perform better than other algorithms only when the transac-

tion size is very large and the system load is extremely heavy and con-

current execution of transactions becomes counterproductive.

The Primary Site and Primary Site method is essentially a central-

ized two-phase locking method. All requests for read locks and write

locks are sent to and processed by a designated primary site, which may

use backup sites to improve resiliency. This method trades fewer tran-

saction abortions for more transaction blocking, and it checks for lock

Distributed Database System Designer Handbook Page 4-7
Performance of Distributed Concurrency Control Section 4

oonfli~t as early as possible. It detects deadlock as early as possi-

ble, and it avoids distributed deadlock detection; but it has a

bottleneck at the primary site.

The Primary JM and Primary L method is a generalized version

of the Primary Site and Primary Site method. All requests for read

locks and write locks are sent to and processed by a designated primary

copy site. However, primary copy sites for different data items may be

different, thus distributed deadlock may occur. This method also trades

fewer transaction abortions for more transaction blocking, and it checks

lock conflict as early as possible. It requires distributed deadlock

detection, but it may delay deadlock detection to reduce communication

overhead.

The Basic A"d Basic method sets read locks and reads data locally

if a local copy is available; otherwise it locks and reads the closest

copy. It sets write locks globally. For each update request, an update

lock is requested from all copies, and the update request is granted

only after locks from all copies are obtained. This method trades fas-

ter read-only transaction response time for slower write transaction

response time. It also trades more transaction blocking for fewer tran-

saction abortions. It checks for lock conflict and deadlock as early as

possible, and at the expense of more communication overhead.

The B sic and Primary CM method processes read requests as the

previous method does, but it requests write locks only from a designated

primary copy. This method checks for most lock conflict as soon as pos-

sible, but it may delay distributed deadlock detection to reduce commun-

ication overhead. This method also trades fewer transaction abortions

for more transaction blocking.

The lasie A" Primary Sitj method is similar to the last method

except that update lock requests are sent to a central site instead of

to several primary copy sites. Thus deadlock detection is more central-

ized than in the previous method, and overhead is more centralized at

the primary site.

The M [CHAN82a, CHAN82b] method avoids conflict between read

requests and update requests by keeping several versions of each data

Page 4-8 Distributed Database System Designer Handbook
Section 4 Performance of Distributed Concurrency Control

item. For each update request, DDU locks locally (if a local copy

exists, or locks the closest copy). The update lock is propagated to

other copies at transaction end. Detection of most conflicts among

update requests is delayed until transaction end. Thus blocking delay

is minimized for most write transactions at the expense of more transac-

tion abortions at transaction end.

The Basic and Ovtimistic method sets read and update locks locally.

if a local copy exists; otherwise it locks the closest copy. The update

lock is propagated to all copies when the transaction that holds the

update lock ends. Thus, distributed lock conflict checking and deadlock

detection is delayed until a transaction ends. This algorithm reduces

transaction blocking delay at the expense of more transaction abortions.

The Majorit Consensus algorithm is similar to the Basic Optimistic

algorithm. Each transaction has two phases: a read phase and a commit

phase. During the read phase, a transaction reads locally if a local

copy exists; otherwise it reads the closest copy. Timestamps of data

items read by a transactions are recorded. During the commit phase,

both read-only and update transactions must be certified by comparing

the timestamps of the data read by each transaction to the transaction

timestamp. Because of the certification step, read-only transactions

require more communication overhead in this algorithm than in the Basic

Optimistic algorithm. The details of the algorithm can be found in

[BERNSla.THOM79]. If the algorithm is modified to favor read-only tran-

sactions so that read-only transactions need no certification, then it

requires no more communication overhead than the Basic Optimistic alSo-

rithm. This algorithm checks for lock conflicts as late as possible,

and it trades less transaction blocking for more transaction abortions.

In the lait-Pie algorithm, a unique sequence number is attached to

every transaction. A transaction always locks locally if a local copy

is available; otherwise it locks the closest copy. The locks are pro-

pagated to other copies when the transaction commits. Whenever a tran-

saction is blocked by another transaction, the algorithm compares the

sequence numbers of the two transactions. If the blocked transaction

has a lower priority sequence number, it waits, otherwise it aborts.

This algorithm checks local lock conflict as soon as possible, aut it

Distributed Database System Designer Handbook Page 4-9
Performance of Distributed Concurrency Control Section 4

checks distributed conflict at transaction end. It has no transaction

deadlock (at the expense of more transaction abortions).

In the Basic Tlnestam method, a read and a write timestamp are

attached to each data item of the database. Each transaction that reads

or updates the data item updates its read or write timestamp. Conflict

is detected by comparing the timestamp of the transaction that reads or

writes a data item with the timestamps of the data item, and not by com-

paring the timestamps of two transactions as done by the Wait-Die algo-

rithm. This algorithm is similar to the Wait-Die algorithm because it

also avoids transaction deadlock. Unlike the Wait-Die algorithm, it has

no blocking delay and possibly has more transaction abortions. This

algorithm may have fewer transaction abortion than the Wait-Die algo-

rithm when most transactions are read-only, because it allows two tran-

sactions (a read-only and a write) to access the same data item simul-

taneously.

The Multinle Version Timestamy algorithm is a generalization of the

previous algorithm. It keeps several versions of each data item in

order to reduce conflict between read-only transactions and update tran-

sactions. Thus, this method trades more overhead of maintaining multi-

ple data versions for fewer transaction abortions.

The Dynamic Timestan algorithm [LIN79, LIN81] is an improved ver-

sion of SDD-l algorithm; it is unique among all the algorithms that we

will compare for the following reasons. It requires transaction times-

tamps but not data item timestamps. It does not avoid transaction

blocking; thus it trades more transaction blocking for fewer transaction

abortions. But it uses preanalysis of transactions to reduce unneces-

sary transaction blocking. This algorithm may require a lot of communi-

cation overhead when many null write messages are needed [BERN82, LIN79,

LIN81], and its performance may depend on system load [LIN81]. Thus it

may perform poorly in some system environments.

The principal characteristics of these algorithms are summariaed in

Figure 4.2.

Pa: 4-10 Distributed Database System Designer Handbook
Section 4 Performance of Distributed Concurrency Control

B-B P-P C-C B-P BaT MvT DIM Opm Maj Die Dyn

blocking/abortion b b b b a a a a a a b
lock conflict check 9 a a a a a x x 1 x a
deadlock detection a 1 a 1 1 1 1
Scheduler 2 2 2 2 t t 2,c 2,c c 2 t
Location of Scheduler d d cn d d d d d d d d
Data Replication n p p p p p p p v p n

b: transaction blocking is preferred.
a: transaction abortion is preferred.
m: both blocking and abortion are used.
a: conflict or deadlock is checked as soon as possible.
1: conflict or deadlock is checked as late as possible.
z: local conflict is checked as soon as possible, but

distributed conflict is checked at transaction end.
, ': the item does not apply.
2: two-phase lockin scheduler.
t: timestamp scheduler.
c: certifier scheduler.
2,c: mixed 2-phase locking and oertifier scheduler.
cn: centralized.
d: distributed.
n: do nothing.
p: primary copy.
v: voting.

Figure 4.2 Summary of Concurrency Control Algorithms

4.3 Performance Evaluation

4.3.1 Short Transaction Loaded A 10 Bound

In this section we compare the performance of distributed con-

currency control algorithms in a system environment in which most tran-

sactions are relatively short and 10 resource is the performance

bottleneck. The comparison of these algorithms is summarized in Figure

4.3. The comparison is based on actual simulation results except for

the Wait-Die, Majority Consensus Timestamp, and Dynamic Timestamp algo-

rithms. The evaluation of the Wait-Die algorithm is based on its simi-

larity to the Basic Timestamp algorithm; the evaluation of the Dynamic

Timostamp algorithm is based on the results of [LIN81]; and the evalua-

tion of the Majority Consensus Timestamp algorithm is based on its simi-

larity with the Basic Optimistic algorithm.

Figure 4.3 shows that five algorithms perform better than others:

the Basic Timestamp, Multiple Version Timestamp, DDM, Optimistic, and

Wait-Die algorithms.

Distributed Database System Designer Handbook Page 4-11
Performance of Distributed Concurrency Control Section 4

In the short transaction loaded and 10 bound environment, we found

that transaction abortion is a better strategy than transaction blocking

(i.e. it is better to abort than to wait). The abortion strategy is

used by the F'sic Timestamp and Multiple Version Timestamp algorithms,

and to a large degree by the Wait-Die algorithm. We also found that it

is better to delay lock conflict detection than to detect lock conflict

early. Both the DDM and the Basic Optimistic algorithms use the delay

strategy.

Although the DDM algorithm uses locking for write transactions, and

the Optimistic algorithm uses locking for both read and write transac-

tions, blocking occurs only among local transactions that access data

from the same site. Transactions running at different sites never block

each other. Write locks are propagated to other sites at transaction

end, then conflicts among transactions running at different sites are

detected and always result in transaction abortions. Therefore perfor-

mance of these two algorithms is closer to those of timestamp algorithms

than to those of two-phase locking algorithms. However, notice that the

DDM and Basic Optimistic algorithms always abort transactions at tran-

saction end, while the timestamp algorithms may abort transactions at an

earlier phase of their execution.

These five algorithms perform equally well in most cases. The

timestamp algorithms perform better than the DDM and Basic Optimistic

algorithms wh1en the database is fully redundant (thus read-only transac-

tions complete quickly), the R/W ratio is high (probability of conflict

among data requests is small), and local delay is large (local blocking

delay is large and abortion at transaction end is expensive). However

when the database is less redundant, the DDM and Basic Optimistic algo-

rithms perform slightly better than the timestamp algorithms. Both

read-only and write transactions require some remote data accesses and

take longer to complete, and this causes the probability of conflict

among transactions to rise and the timestamp algorithms to abort more

transactions.

The Basic Timestamp algorithm performs as well as the Multiple Ver-

sion Timestamp algorithm, and the latter requires more overhead and

storage space for keeping multiple versions of data [LINN83]. Therefore

Page 4-12 Distributed Database System Designer Handbook
Section 4 Performance of Distributed Concurrency Control

the Basic Timestamp algorithm is preferable to the Multiple Version

Timestamp algorithm, unless the multiple versions of data are required

in any case for database recovery and resiliency. Similarly, the

difference in performance between the DDM and Basic Optimistic algo-

rithms is very small, and the former needs higher overhead and more

storage space for keeping multiple versions of data. The Basic Optimis-

tic algorithm is preferable, unless the versions of data are required in

any case for database recovery and resiliency.

The Wait-Die algorithm performs slightly worse than the Basic

Timestamp algorithm when most transactions are read-only. When a read-

only transaction conflicts with a write transaction, the timestamp algo-

rithms never abort the read-only transaction, and they abort the write

transaction only when a nonserializable execution may occur. However

when most transactions are write transactions, the Wait-Die algorithm is

preferred because it performs as well as the Basic Timestamp method and

it needs no data item timestamps, which require storage space and pro-

ceasing overhead.

The Dynamic Timestamp algorithm performs best when most transac-

tions are read-only, communication is fast, database is almost fully

redundant, and preanalysis can be done on most transactions. In this

environment, the fast protocols, R1, lla, Riab, and Rib CLIN79], LIN82]

apply to most transactions. Assuming system conditions remain the same

except that the database is not redundant, the Dynamic Timestamp algo-

rithm still performs relatively well, because more efficient protocols

(R2, R2a, R2ab, and R2b) apply to most transactions. These protocols

are not as efficient as the group of Rl protocols, but they are rela-

tively fast compared with R3 protocol. In all other cases, either when

the communication is slow or when most transactions update the database,

the Dynamic Timestamp algorithm is not efficient.

The Majority Consensus algorithm performs reasonably well, but not

as well as the Basic Optimistic algorithm. The Majority Consensus algo-

rithm as proposed in (THOM791 requires extra communication overhead for

read-only transactions. If the algorithm is modified to favor read-only

transactions, so that read-only transactions need not be certified, then

it would perform as well as the Basic Optimistic algorithm.

- -- ' 'il " " "' " I i i i i m. . i- . - _ _

Distributed Database System Designer Handbook Pale 4-13
Performance of Distributed Concurrency Control aection 4

To summarize, in this environment transaction abortion is a better

strategy than transaction blocking, and delayed look conflict checking

is a better strategy than early lock conflict checking.

B-B P-P C-C B-P BaT MvT DDM Opm Maj Die Dyn

R/V L/C Red

low C full 6 4 5 3 1 1 1 1 2 1 3
low low full 6 4 5 3 1 1 1 1 2 1 3
high low full 6 4 5 3 1 1 1 1 3 1 3
high high full 4 4 5 3 1 1 2 2 3 2 1
high high part 6 6 7 5 3 3 1 2 3 4 2
high low part 5 5 6 4 2 2 1 1 2 3 2
low • part 6 4 5 4 2 2 1 1 2 2 3

Rank 1 is best and Rank 6 is worst.
Rank numbers have no absolute meaning. They only show relative

performance across a row, not across a column.
R/W: Ratio of Read-only transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding

queuing delay
Red: Redundancy of the database

C :Does not matter

Figure 4.3 Performance Couparison: Short
Transaction Loaded 6 10 Bound

4.3.2 Short Transactions $ Communication Bound

In this section we compare the performance of distributed con-

currency control algorithms in a system environment in which most tran-

sactions are relatively short and communication channel is the perfor-

mance bottleneck. The comparison of the algorithms is summarized in

Figure 4.4. The comparison is based on actual simulation results except

for the Wait-Die, Majority Consensus, and the Dynamic Timestamp algo-

rithms. The evaluation of the Wait-Die algorithm is based on its simi-

larity to the Basic Timestamp algorithm; the evaluation of the Dynamic

Timestamp algorithm is based on the results of [LIN81]; and the evalua-

tion of the Majority Consensus algorithm is based on its similarity to

the Basic Optimistic algorithm.

Figure 4.4 shows that seven algorithms perform better than the oth-

ers: Bisic-Prinary Copy, Basic Timestamp, Multiple Version Timestamp,

DIN, Basic Optimistic, Wait-Die, and Dynamic Timestamp.

".. rAJ

Page 4-14 Distributed Database System Designer Handbook
Section 4 Performance of Distributed Concurrency Control

We found that transaction abortion, similar to the SIO environment,

is a better strategy than transaction blocking, and that delayed lock

conflict detection is a better strategy than early detection. However,

because of the communication channel bottleneck, performance of the

algorithms that require extra communication messages degrade in some

cases.

The Basic Timestamp and Multiple Version Timestamp algorithms per-

form best in all cases. However, when the database is fully redundant,

the DDM and Basic Optimistic algorithms perform just as well. Read-only

transactions never incur communication delays, and write transactions

incur communication delays only during the commit phase. Therefore

transactions finish fast, blocking delay is shorter, and abortion at

transaction end is less expensive.

The Majority Consensus algorithm, as proposed in [ThON79], does not

perform well because of the extra communication messages required for

read-only transactions. If the algorithm is modified to favor read-only

transactions, so that read-only transactions need not be certified, the

algorithm would perform as well as the Basic Optimistic algorithm.

The Wait-Die algorithm performs just as well as the timestamp algo-

rithms in most cases. However, when most transactions are read-only,

the Wait-Die algorithm unnecessarily aborts more read-only transactions

than the timestamp algorithms, thus performing worse than the timestamp

algorithms.

The DDN algorithm performs as well as the timestamp algorithms when

the database is fully redundant. However, when the database is less

redundant and most transactions are read-only, its performance degrades

as shown in Figure 4.4. When the database is not fully redundant,

read-only transactions require one extra communication message, which

causes a long delay in a communication bound environment.

The Basic-Primary Copy algorithm performs 10% to 20% worse than the

best algorithms in all cases, because it incurs extra communication mes-

sages when obtaining locks from the primary copies, and it uses transac-

tion blocking instead of transaction abortion. The Dynamic Timestamp

algorithm performs best when most transaction are read-only and can be

Distributed Database System Designer fandbook Pase 4-15
Performance of Distributed Concurrency Control Section 4

preanalyzed. In this environment, the most efficient protocols can be

used and communication overhead for null-write messages is minimized.

Since the Basic Timestamp algorithm performs as well as the Multi-

ple Version Timestamp algorithm, the former is preferable unless the

multiple versions of data are required in any case for database recovery

and resiliency. Similar observations apply to the DDU and Basic

Optimistic algorithms [LINN83].

Our conclusion is that in this environment abortion is better than

blocking, and that delayed lock conflict checking is better than early

lock conflict checking. However, some algorithms that use these two

strategies may not perform well in some cases because they require extra

communication messages.

- ------------------------------ ---------- --

B-B P-P C-C B-P BaT XvT DDE Opm Maj Die Dyn

R/V L/C Red

low 0 full 5 4 4 3 1 1 1 1 3 1 3
high low full 5 6 4 3 1 1 1 1 5 2 2
hiSh high full 5 6 4 2 1 1 1 1 5 2 2
high low part 5 6 7 3 1 1 4 2 5 2 2
low low part 5 4 6 2 1 1 2 1 3 1 4
high high part 4 5 6 2 1 1 3 1 5 2 2
low high part 5 4 6 3 1 1 2 1 3 1 4

Rank 1 is best and Rank 6 is worst.
Rank numbers have no absolute meaning. They only show relative

performance across a row, not a column.
R/W: Ratio of Read-only transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding

queuing delay
Red: Redundancy of the database

C :Does not matter

Figure 4.4 Performance Comparison: Short Transaction Loaded
R Communication Bound

4.3.3 Long Transaction Loaded A 10 Bound

In this section we compare the performance of distributed con-

currency control algorithms in a system environment In which most tran-

sactions are relatively long and 10 resource is the bottleneck. The

comparison is summarized in Figure 4.5. The comparison is based on

actual simulation results except for the Wait-Die and Majority Consensus

algorithms. The evaluation of the Wait-Die algorithm is based on its

Page 4-16 Distributed Database System Designer Handbook
Section 4 Performance of Distributed Concurrency Control

similarity to the Basic Timestaup algorithm; and the evaluation of the

Majority Consensus algorithm is based on its similarity to the Basic

Optimistic algorithm.

Figure 4.5 shows that three algorithms perform better than the oth-

ers: Basic Primary, DDM, ahd Basic-Optimistic.

In this environment (long transactions, heavy system load) transac-

tions conflict with each other more often, but only a fraction of the

conflicts lead to transaction deadlocks. Thus, transaction blocking is

better than indiscriminate transaction abortion. Moreover, prompt lock

conflict detection is better than procrastination. Lock conflicts that

are detected at transaction end always lead to deadlocks. The Basic

Primary, DDM, and Basic Optimistic algorithms use the blocking strategy.

The Basic Primary algorithm uses the early lock conflict detection stra-

tegy.

The Basic Primary Copy algorithm performs best in this envirorment

because it does not abort a transaction unless it deadlocks, and it

detects lock conflicts as soon as they occur. However, when most tran-

sactions are read-only, and the database is not fully redundant, the

Basic Primary Copy does not perform as well as the DDM and Basic-

Optimistic algorithms, because the extra communication messages required

by the Basic Primary Copy algorithm for write-locks and deadlock detec-

tions does not outweigh the extra transaction abortions by the DDM and

Basic-Optimistic algorithm.

The DDM and the Basic Optimistic algorithms perform well in par-

tially redundant databases, because more lock conflicts are detected

during the reading phase of transactions and less transactions abort at

the commit phase. However, when the database is fully redundant, most

lock conflicts are detected during the commit phase, which always leads

to deadlocks and transaction abortions, thus resulting in the poorer

performance of these two algorithms in this conditions.

The timestamp algorithms do not perform as well as the Basic-

Primary method because transaction blocking is better than transaction

abortion. However, the timestamp algorithms perform better than the DDM

and Basic-Optimistic algorithms, when the database is fully redundant.

Distributed Database System Designer Handbook Page 4-17
Performance of Distributed Concurrency Control Section 4

Read-only transactions incur no communication delay and complete

quickly; the read-phase of write transactions also completes quickly.

Thus conflict between read-only transactions and write transactions that

result in the abortion of write transactions is reduced. In addition,

when the database is fully redundant, the timestamp algorithms detect

more conflicts at the read-phase, thus aborting more transactions at

earlier stages of processing, while the DDH and Basic-Optimistic algo-

rithms detect more conflicts at the commit phase, thus aborting more

transactions at their ends. However, when the database is not fully

redundant, the DDM and Basic-Optimistic algorithms detect more conflicts

at the read-phase, and they abort more transactions at tht early stages

of processing, thus performing better than the timestamp algorithms.

The Wait-Die algorithm performs as well as the Basic Timestamp

algorithm, except when most transactions are read-only. Then the Basic

Timestamp algorithm has higher throughput of read-only transactions than

the Wait-Die algorithm.

The Majority Consensus algorithm also performs poorly because it

delays lock conflict detection until transaction end, thus resulting in

many late transaction abortions. In fact, all certifier algorithms that

certify transactions at transaction end perform badly in the long tran-

saction environment. The Primary Site 0 Primary Site (C-C) and the Pri-

mary Copy A Primary Copy (P-P) algorithms also perform relativety well

when the database is fully redundant. These two algorithms abort fewer

transactions than the Basic Timestamp, Multiple Version Timestamp, DDM,

and Basic Optimistic algorithms, and the savings in transaction abor-

tions more than make up for the extra communication messages required by

the two algorithms. The Basic-Basic algorithm does not perform as well

because it requires many more communication messages than other algo-

rithms.

To summarize, in this environment transaction blocking is better

than transaction abortion, and early lock conflict detection is better

than late detection.

Page 4-18 Distributed Database System Designer Handbook
Section 4 Performance of Distributed Concurrency Control

B-B P-P C-C B-P BaT MvT DDM Opm Maj Die

R/(R+W) Loc/Com Redundant
low low full 5 2 2 1 2 2 3 3 4 2
high low full 5 2 2 1 2 2 3 3 4 3
low high full 5 2 2 1 2 2 3 3 4 2
high high full 5 2 2 1 2 2 3 2 4 3

low low part 5 2 2 1 3 3 1 1 4 2
high low part 5 3 3 2 3 3 1 1 4 3
low high part 5 2 2 1 3 3 1 1 4 2
high high part 5 3 3 2 3 3 1 1 4 3

Rank 1 is best and Rank 6 is worst.
Rank numbers have no absolute meaning. They only show relative

performance across a row, not a column.
R/W: Ratio of Read-only ransactions to Write transactions
L/C; Ratio of Local delay to Communication delay, excluding

queuing delay
Red: Redundancy of the database
* • Does not matter

Figure 4.5 Performance Comparison: Long
Transaction Loaded 1 10 Bound

4.3.4 Long Transactions 0 Communication Bound

In this section, we compare the performance of distributed con-

currency control algorithms in a system environment in which most tran-

sactions are long and communication channel is the bottleneck. The com-

parison of these algorithms is summarized in Figure 4.6. The comparison

is based on actual simulation results except for the Wait-Die and Major-

ity Consensus algorithms. The evaluation of the Wait-Die algorithm is

based on its similarity to the Basic Timestamp algorithm; and the

evaluation of the Majority Consensus algorithm is based on its similar-

ity to the Basic Optimistic algorithm.

Figure 4.6 shows that six algorithms perform better than the oth-

ers: Basic Timestamp, Multiple Version Timestamp, DDM, Basic Optimistic,

Basic Primary, and Wait-Die.

In this system environment (long transactions, heavy system load,

and long communication delay) transactions conflict with each other more

often, but only a fraction of the conflitzs lead to deadlocks; thus,

transaction blocking is better than indiscriminate transaction abortion.

Moreover, early lock conflict detection is better than procrastination.

Lock conflicts detected at transaction end always lead to deadlocks.

Distributed Database System Designer Handbook Page 4-17
Performance of Distributed Concurrency Control Section 4

Read-only transactions incur no communication delay and complete

quickly; the read-phase of write transactions also completes quickly.

Thus conflict between read-only transactions and write transactions that

result in the abortion of write transactions is reduced. In addition,

when the database is fully redundant, the timestamp algorithms detect

more conflicts at the read-phase, thus aborting more transactions at

earlier stages of processing, while the DDM and Basic-Optimistic algo-

rithms detect more conflicts at the commit phase, thus aborting more

transactions at their ends. However, when the database is not fully

redundant, the DDM and Basic-Optimistic algorithms detect more conflicts

at the read-phase, and they abort more transactions at the early stages

of processing, thus performing better than the timestamp algorithms.

The Wait-Die algorithm performs as well as the Basic Timestamp

algorithm, except when most transactions are read-only. Then the Basic

Timestamp algorithm has higher throughput of read-only transactions than

the Wait-Die algorithm.

The Majority Consensus algorithm also performs poorly because it

delays lock conflict detection until transaction end, thus resulting in

many late transaction abortions. In fact, all certifier algorithms that

certify transactions at transaction end perform badly in the long tran-

saction environment. The Primary Rite 6 Primary Site (C-C) and the Pri-

mary Copy 0 Primary Copy (P-P) algorithms also perform relativeiy well

when the database is fully redundant. These two algorithms abort fewer

transactions than the Basic Timestamp, Multiple Version Timestamp, DDM,

and Basic Optimistic algorithms, and the savings in transaction abor-

tions more than make up for the extra communication messages required by

the two algorithms. The Basic-Basic algorithm does not perform as well

because it requires many more communication messages than other algo-

ri thins.

To summarize, in this environment transaction blocking is better

than transaction abortion, and early lock conflict detection is better

than late detection.

Distributed Database System Designer Handbook Page 4-19
Performance of Distributed Concurrency Control Section 4

The Basic Primary, DDM, Basic Optimistic, and to certain degree the

Wait-Die algorithms use the blocking strategy; and the Basic Primary and

Wait-Die algorithms detect lock conflicts as early as possible. In

addition, because of long communication delay, algorithms requiring

extra communication messages may not perform well even if they use tran-

saction blocking instead of transaction abortion. The DDE and the Basic

Primary algorithms require extra communication messages in some cases.

The Basic Primary Copy algorithm performs the best when the data-

base is not fully redundant because it requires no more communication

messages than the other algorithms, and because it causes fewer unneces-

sary transaction abortions. Even when the database is not fully redun-

dant, if most transactions are write transactions and local delay is

high relative to the communication delay, the Basic Primary Copy algo-

rithm still performs better than the Basic Timestamp, Multiple Version

Timestamp, DDE, and Basic-Optimistic algorithms, because the latter

abort write transactions frequently. However, when the database is

fully redundant, the Basic Primary Copy algorithm requires more communi-

cation messages than the Basic Timestamp, Multiple Version Timestamp,

DDE, anc Basic Optimistic algorithms. Thus, except for the cases above,

the extra communication messages required by the Basic Primary Copy

algorithm make its performance worse than that of the Basic Timestamp,

Multiple Version Timestamp, DDE, and isasic-Optimistic algorithm in this

communication bound environment.

The timestamp based algorithms perform best when the database is

fully redundant, then read-only transactions incur no communication

delay and complete quickly. The read phase of write transactions also

completes quickly. When read-only transactions and the read phase of

write transactions complete quickly, conflicts between read-only and

write transactions that result in abortion of the write transactions is

reduced. Thus, unnecessary transaction abortion is reduced.

The DDM method avoids conflicts between read-only transactions and

write transactions, but it pays with more abortions of write transac-

tions at transaction end. Thus, when most transactions are read-only,

it performs very well. The higher throughput of read-only transactions

make up for the extra abortion of write transactions. Notice that DDM

,, , _ .A

Page 4-20 Distributed Database System Designer Handbook
Section 4 Performance of Distributed Concurrency Control

requires a extra round of communication messages for read-only transac-

tions when the database is not fully redundant. Then its performance

degrades.

The Basic-Optimistic algorithm also performs well when most tran-

sactions are read-only; then read-only transactions and the read phase

of write transactions complete quickly. Otherwise it performs poorly

because the system is eventually saturated with many long write transac-

tions that later abort.

The Wait-Die algorithm performs as well as the Basic Timestamp

algorithm when most transactions are write transactions, but not as well

when most transactions are read-only transactions. Since the Wait-Die

algorithm needs no overhead for maintaining data item timestamps, it is

preferable to the timestamp based algorithms if most transactions are

write transactions.

The Basic 6 Basic, Primary Copy A Primary Copy, and Primary Site 5

Primary Site algorithms perform poorly because they require more commun-

ication messages than other algorithms. Communication overhead is

expensive in this communication bound environment.

To summarize, in this environment transaction blocking is better

than transaction abortion, and early lock conflict detection is better

than late detection. However, some algorithms that use these two stra-

tegies may not perform well in some cases because they require extra

communication messages.

4.4 Conclusion

We found that five of the twelve algorithms perform best in various

system environmentss: Basic Timestamp, Multiple Version Timestamp, DDM,

Basic Optimistic, and Basic-Primary algorithms.

When most transactions are short, concurrency control algorithms

that abort conflicting transactions (such as Basic Timestamp, Multiple

Version Timestamp algorithms) perform better than algorithms that block

conflicting transactions (such as the Basic Yrimary algorithm). In this

Distributed Database System Designer Handbook Page 4-21
Performance of Distributed Concurrency Control Section 4

B-B P-P C-C B-P BaT NvT DUI/ Opm Xaj Die

it/(R+W) Loc/Com Redundant

low low full 6 5 5 6 1 1 5 4 6 1
high low full 6 5 S 4 1 1 3 3 6 2
low high full 6 5 5 1 2 2 4 3 6 2
high high full 6 5 5 4 2 2 1 3 6 3
low low part 6 5 5 1 3 3 2 3 6 3
high low part 6 5 5 1 2 2 2 1 6 3
low high part 6 5 5 1 2 2 4 3 6 2
high high part 6 5 5 2 3 3 1 2 6 3

Rank 1 is best and Rank 6 is worst.
Rank numbers have no absolute meaning. They only show relative

performance across a row, not a column.
R/W: Ratio of Read-only transactions to Write transactions
L/C: Ratio of Local delay to Communication delay, excluding

queuing delay
Red: Redundancy of the database
* : Does not matter

Figure 4.6 Performance Comparison: Long
Transactions # Communication Bound

environment, transactions conflict rarely; and when they do conflict,

the blocking transactions tend to be longer than the average transaction

size and blocking delay long (LINN83J. If a two-phase locking algorithm

must be used, algorithms that delay lock conflict checking (such as the

DDN and the Basic Optimistic algorithms) perform better than those that

expedite lock conflict checking (such as the Basic Primary algorithm).

Unless the communication bandwidth is very high, communication delay can

devastate system performance; thus, the designer should reduce communi-

cation delay by locally controlling and accessing data as much as possi-

ble.

The issue of balancing communication delay against data distribu-

tion and replication is part of the complex problem of distributed data-

base design. Distributed database design must also take into account

the issues of distributed query processing and distributed database

reliability, and is beyond the scope of this handbook.

Behavior of systems that have long transactions is very different

from that of systems that have short transactions. Long transactions

degrade system performance very quickly because they have more transac-

tion conflicts. Since only a fraction of these conflicts results in

deadlocks, concurrency control algorithms that use transaction blocking

Page 4-22 Distributed Database System Designer Handbook
Seotion 4 Performance of Distributed Concurrency Control

often perform better than those that use transaction abortion indiscrim-

inately. Moreover, concurrency algorithm# that detect transaction con-

flict earlier often perform better than those that detect transaction

conflict later. The effect of communication delay on the performance of

a system that has long transactions is even more devastating than the

effect on a system that has short transactions. Thus the designer must

reduce communication delay as much as possible by controlling and

accessing data locally.

However, no matter which concurrency algorithm the designer uses, a

system that has long transactions always performs worse than a system

that has short transactions. The designer should design transactions to

access as much data in parallel as possible, and to break long transac-

tions into shorter transactions. Long transactions that cannot be bro-

ken into shorter ones must be executed in background mode.

Our performance study shows that no one algorithm performs best in

all system and application environments. If the system environment is

stable, the database designer can select one algorithm that performs

best in the environment. If the system environment is not stable, the

database designer can assign different weights to different environments

according to how often the system stays in each environment. The data-

base designer then selects the algorithm that has the best weighted

average performance.

From the results, we can also conclude that the best algorithm

would be one that could be adjusted by the system administrator accord-

ing to the environment. The administrator would adjust the algorithm to

use transaction abortion and delay lock conflict detection whenever

transactions are short, and to use transaction blocking and detect lock

conflicts as soon as possible whenever transactions are long. The adju-

stable algorithm would also alternate, depending on the load on the com-

munication cbnnel, between algorithms that have more localized control

and algorithms that have more distributed control.

-I-----

Distributed Database System Designer Handbook Page 5-1
References Section 5

5. References

(AH075] A.V. Aho, E. Hopcroft and J.D. Ullman, 'The Design and Analysis

of Computer Algorithms,* Addison-Wesley Publishing Co. (1975).

[ALSB76J Alsberg, P.A. and J.D. Day, 'A Principle for Resilient Sharing

of Distributed Resources,' Prc "a4 .In. SC2nf. gU Softwar

EnAineering, October 1976.

[ALSB78] Alsberg, P.A., G.G. Belford, J.D. Day and E. Grapa, 'Multi-copy

Resiliency Techniques.' Distributed Data Management (3.B. Roth-

nie, P.A. Bernstein, D.V. Shipman, eds.), IEEE, 1978, pp. 128-

176.

EANDL82] Andler, S., 1. Ding, K. Eawaran, C. Hauser, W. Kim, J. Mehl, R.

Williams, 'System D: A Distributed System for Availability,'

Proc&. Sth YLDB, Sept. 1982, pp. 33-44.

IATTA82] Attar R., P.A. Bernstein and N. Goodman, 'Site Initialization,

Recovery, and Back-up in a Distributed Database System,' P1-21

6th Berkeley Workshop, Feb. 1982, pp. 185-202.

EBADA79I Badal, D.Z., 'Correctness of Concurrency Control and Implica-

tions in Distributed Databases,' Prc COMPSAC Conf., Chicago,

Nov. 1979.

(BART82] Bartlett, J.F., 'A 'NonStop' Operating System,' in Ike Theory

and Practice of Reliable System Design, (Siewiarek and Svarz,

eds.), Digital Press, 1982, pp. 453-460.

[DAYES0a] Bayer, R., H. Beller and A. Reiser, 'Parallelism and Recovery

in Database Systems,' g Tras. jU Database Systems, Vol. 5, No.

2 (June 1980), pp. 139-156.

[BAYE80b] Bayer. R., E. Elhardt, H. Holler and A. Reiser, 'Distributed

Concurrency Control in Database Systems,' PkQ&. £igtI&13. 99L.

ga yeM Large Data Bases, IEEE. N.Y., 1980, pp. 275-284.

[BU0R72] Bjork L.A. and C.T. Davies, 'The semantics of the preservation

and recovery of integrity in a data system,' In! Th-Qi.1.4i Dec.

22, 1972.

[BEMN78]Bernstein, P.A. 3.D. Rothnie, N. Goodman and C.B. Papadimi-

triou, 'The Concurrency Control Mechanism of SDD-l; A System for

Distributed Databases (The Fully Redundant Case),' Tr5lans. gg

E.1.2. Distributed Database Sy.o Deinxandbook
Section § Iiroitacea

Software Enaineerina, Vol. SE-4, No. 3 (Nay 1978).

[BERN79] Bernstein, P.A., D. Shipman and V.S. Tong, 'Formal Aspects of

herializability in Database Concurrency Control,' = Tr.ns. e

Software Engineering, Vol. SE-5. No. 3. May 1979.

[BERN8Oa] Bernstein, P.A. and D. Shipman, 'The Correctness of Con-

currency Mechanisms in a System for Distributed Databases (SDD-

1),' ACM Trans. on Database Systems, Vol. 5. No. 1, March 1980.

[BERN80b] Bernstein, P.A.. D.W. Shipman and J.B. Rothnie, 'Concurrency

Control in a System for Distributed Databases (SDD-1),' AQ

Trans. on Database §2s. 5, 1 (March 1980), pp. 18-51.

[BERN81a] Bernstein, P.A. and N. Goodman, 'Concurrency Control in Dis-

tributed Database Systems,' &CM Computing Surveys, 13, 2 (June

1981), pp. 185-221.

[BERN81b] Bernstein, P.A. N. Goodman and N.Y. Lai 'A Two-Part Proof

Schema for Database Concurrency Control,' Pro. 98 Berkeley

Vorkshop on Distributed Databases and Computer Networks.

[BERN82] Bernstein, P.A. and N. Goodman, 'A Sophisticate's Introduction

to Distributed Database Concurrency Control,' Proc. tk JIn.

Sept. 1982, pp. 62-76.

[BERN83] Bernstein, P.A. and N. Goodman, 'Concurrency Control Algorithms

of Multiversion Database Systems,' submitted for publication.

[BJOR73] Bjork, L.A, 'Recovery Scenario for a DB/DC System,' kg. . AQ/

Nat'l Conf., 1973, pp. 142-146.

[CASA79] Casanova, M.A. Do Concurrency Control Problem of Database

Systems, Lecture Notes in Computer Science, Vol. 116, Springer-

Verlag, 1981 (originally published as Th-17-79, Center of

Research in Computing Technology, Harvard University, 1979).

[CRAN82a] Chan, A., U. Dayal, S. Fox, N. Goodman, D. Ries and D. Skeen,

'Overview of an Ada Compatible Distributed Database Manager,'

submitted for publication.

(CRAN82b] Chan, A. and 2. Gray, 'Implementing Distributed Read-only

Transactions,' submitted for publication.

[CIANS2] Chan, A., S. Fox, V.T. Lin, A. Nori, and D. Ries, 'The Imple-

mentation of an Integrated Concurrency Control and Recovery

Scheme,' £zos. &Q SIGQOD onf. on Kanagement of D&", June 1982,

pp. 184-191.

Distributed Database System Designer Handbook Page 5-3
References so tion S

(CHENSO] Chen&, W.K. and G.C. B~elford, 'Update Synchronization in Dis-

tributed Databases.' ?uoa. I"a Borkelea Lorkshoy gA Ygu Lautu

RASA asesi Oct. 1980.

[CHNP.82] Chen&, U.K. and G.G. Belford, 'The Resiliency of Fully Repli-

cated Distributed Databases,' Pfri. W~ BaliklJj Wokh Feb.

1982, pp. 23-44.

ECOOP821 Cooper, E.C, 'Analysis of Distributed Commit Protocols,' Prc

M SMIiGMQ Conf. gn Management 2.j Data, ACM, June 1982, pp. 175-

183.

[DAVI73] Davies, C.T, 'Recovery Semantics for a DB/DC system,' Prp.c. ACM

NgA'i Conf., 1973, pp. 136-141.

[DOLE82] Dolev, D, 'The Byzantine Generals Strike Again,' L. 1 Alzo-

zLithms, 3, 1 (1982).
[DUBO82J Dubourdieu, D.J.. 'Implementation of Distributed Transactions,'

Proc. Stxth Berkeley 1orkshoy on Distributed Data Management "jn

Computer Networks, 1982, pp. 81-94.

(EAGE8l] Eager, D.L, 'Robust Concurrency Control in a Distributed Data-

base,' Univ. of Toronto TR CSRG #135, Oct. 1981.

(ESWA76] Eswaran, K.?., J.N. Gray, R.A. Lorie and I.L. Traiger, 'The

Notions of Consistency and Predicate Locks in a Database System,'

Commun. & X, Vol. 19, No. 11, Nov. 1976, pp. 624-633.

1EIL177] Ellis, C.A., 'A Robust Algorithm for Updating Duplicate Data-

bases,' Proc. 2nd Berkeley Workshon on Distributed Databases lpu4

Computer Networks, May 1977.

[FISC82] Fischer, N.J. and A. Michael, 'Sacrificing Serializability to

Attain High Availability of Data in an Unreliable Network,' Proc.

Ift AC jL&-SiQI §yp 9- Principles -of Database SYstems,
ACM, Mar. 1982, pp. 70-75.

LGALL82] Geller, B.I., Ph.D Thesis, Univ. of Toronto, 1982.

EGARC79] Garcia-Molina, H., 'Performance Comparisons of Two Update Algo-

rithms for Distributed Databases.' Prop. iA Berkeley Workshov 9-

Distributed Databases g." Computer Networks, August 1978.

[GARC79aI Garcia-Molina, H., 'Performance of Update Algorithms for

Replicated Data in a Distributed Database,' Ph.D. Dissertation,

Computer Science Department, Stanford University, June 1979.

Page 5-4 Distributed Database System Designer Handbook
Section 5 References

[GARC79b] Garcia-Molina, H., 'A Concurrency Control Mechanism for Dis-

tributed Data Bases Which Use Centralized Locking Controllers,'

Proc. 4th Berkeley Workshop on Distributed Data Management A Com-

puter Networks, August 1979.

[GARC82] Garcia-Molina, H,. 'Elections in a Distributed Computing Sys-

tem,' IEEE Trans on Computers C-31, l(Jan. 1982), pp. 48-59.

[GELE78] Gelenbe, E. and K. Sevcik, 'Analysis of Update Synchronization

for Multiple Copy Data Bases,' Proc.21d Berkeley Workshop on Dis-

tributed Databases and Computer Networks, August 1978.

[GIFF79] Gifford, D.K, 'Weighted Voting for Replicated Data,' Proc. 7th

_MR. on 0perating Systems Principles, ACM, Dec. 1979, pp. 150-

159.

[GLIG80] Gligor, V.D. and S.H. Shattuck, 'On Deadlock Detection in Dis-

tributed Systems,' IEEE Trans. on Software Enaineering, Vol. SE-

6, No. 5, September 1980, pp. 435-440.

IGRAY75] Gray, J.N., R.A. Lorie, G.R. Putzulo and I.L. Traiger, 'Granu-

larity of Locks and Degrees of Consistency in a Shared Data

Base,' IBM Research Report RJ1654, September 1975.

[GRAY78] Gray, J.N., 'Notes on Database Operating Systems,' Overating

Systems: An Advanced Course, Vol. 60, Lecture Notes in Computer

Science, Springer-Verlag, N.,Y 1978, pp. 393-481.

[GRAY81] Gray, J.N., P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T.

Price, F. Putzulo and I. Traiger, 'The Recovery Manager of the

System R Database Manager,' ACM Computing Surveys, 13, 2 (June

1981), pp. 223-242.

[HAMM80] Hammer, U.M. and D.W. Shipman, 'Reliability Mechanisms for

SDD-1: A System for Distributed Databases,' ACM Trans. on Data-

base §Ls., Vol. 5, No. 5 (Dec. 1980), pp. 431-466.

[HARD79] Harder, T. and A. Reuter, 'Optimization of logging and recovery

in a database system,' in Database Architecture, Bracchi and

Nijssen, ads., North-Holland, 1979, pp. 151-168.

[HARD82] Harder, T. and A. Reuter, 'Principles of Transaction Oriented

Database Recovery -- A Taxonomy,' Univ. laiserslautern TR 50/82.

(IOLT72J Holt, R.C., 'Some Deadlock Properties of Computer Systems.'

Computing Surveys !, 3 (Dec. 1972), pp. 179-195.

Distributed Database System Designer Handbook Page 5-5
References Section 5

[K[A.791 Kaneko, A., Y. Nishihara, K. Tsuruoka, and X. Hattori, 'Logical

Clock Synchronization Method for Duplicated Database Control,'

Proc. First Int'l. Conf. 2n Distributed Computing Systems, IEEE,

N.Y., October 1979, pp. 601-611.

[KAWA79] Kawazu, S., S. Minamib, K. Itoh, and K. Teranaka, 'Two-Phase

Deadlock Detection Algorithm in Distributed Databases,' Proc.

I Int'l. Conj. on Yj1 Lare Data Bases, IEEE, N.Y.

(KING74] King, P.F and A.S. Collmeyer, 'Database Sharing - An Efficient

Method for Supporting Concurrent Processes,' Proc. 1974 NCC,

AFIPS Press, Montvale, NJ, 1974.

[KIN79] Kim, K.1, 'Error Detection, Reconfiguration and Recovery in Dis-

tributed Processing Systems,' Conf. on pist'd Computing, IEEE,

1979, pp. 284-294.

EKUNG79] Kung, H.T. and J.T. Robinson, 'On Optimistic Methods for Con-

currency Control,' Proc.1979 Conf. on Very Larte Data Bases, Rio

de Janeiro, Brazil, October 1979.

[LA/P76] Lampson, B.W. and H. Sturgis, 'Crash Recovery in a Distributed

Storage System.' Technical Report, Xerox PARC (1976)

[LANP78a] Lamport, L, 'The Implementation of Reliable Distributed Mul-

tiprocess Systems.' Computer Networks, 1 2 (1978), pp. 95-114.

[LAMP78b] Lamport, L., 'Time, Clocks and the Ordering of Events in a

Distributed System,' Comm . of the ACM 21, 7, (July 1978), pp.

558-565.

[LAMPS2] Lamport, L., R. Shostak and M. Pease, 'The Byzantine Generals

Problem,' ACM Trans. on Programming Languages and Systems, Vo'.

4, No. 3 (July 1982), pp. 382-401.

[LILA78] LeLann, G, 'Algorithms for Distributed Data-Sharing Systems

Which Use Tickets,' Proc. 3rd Berkeley Workshop on Distributed

Databases, and Computer Networks, August 1978.

[LIND79] Lindsay, B.G. et al., 'Notes on Distributed Databases,' IBM

Research Report, No. R2571, July 1979.

(LIN79] Lin, W.K., 'Concurrency Control in a Multiple Copy Distributed

Data Base System,' Prec. 4th Berkeley Workshop on Distributed

QILJ Manaaement 0 Compute Networks, August 1979.

Page 5-6 Distributed Database System Designer Handbook

Section 5 References

jLIN81] Lin, W.K., 'Performance Evaluation of Two Concurrency Control

Mechanisms in a Distributed Database System,' ACM SIGMOD-81

International Conference on Management of Data, April 1981, Ann

Arbor, MI.

[LIN81a] Lin, W.K., et al, 'Distributed Database Control and Allocation

First Semiannual Technical Report,' July 8, 1981, Computer Corp.

of America, Cambridge, MA.

[LIN82s] Lin, W.K., et al, 'Distributed Database Control and Allocation

Second Semiannual Technical Report,' Jan. 8, 1982, Computer Corp.

of America, Cambridge, MA.

[LIN82b] Lin, W.K., et al, 'Distributed Database Control and Allocation

Third Semiannual Technical Report,' July 8, 1982, Computer Corp.

of America, Cambridge, MA.

[LIN83] Lin, W.K., et al, 'Distributed Database Control and Allocation

Final Technical Report,' Feb. 8, 1983, Computer Corp. of America,

Cambridge, MA.

[LINN82u] Lin, W.K, and J. Nolte, 'Performance of Two Phase Locking,'

Proc. 1982 Berkeley Workshov on Distributed Data Management

Computer Networks, pp. 131-160.

[LINN82b] Lin, W.K. and J. Nolte, 'Read-Only Transaction and Two Phase

Locking,' 2nd IEEE Symposium on Reliability in Distributed

Software and Database Systems, July 1982, Pittsburgh, PA.

(LINN82c] Lin, W.1. and J. Nolte, 'Communication Delay and Two Phase

Locking,' 3rd International Conference on Distributed Computing

Systems, Oct. 1982, Fort Lauderdale, FL.

ILINN83] Lin, W.K. and J. Nolte, 'Basic Timestamp, Multiple Version

Timestamp, and Two Phase Locking,' submitted for publication.

[LORI77] Lorie, R.A, 'Physical Integrity in a Large Segmented Database,'

&CM Trans. on Database §_zs., Vol. 2, No. 1 (Mar. 1977), pp. 91-

104.

[MINO79J Minoura, T., 'A New Concurrency Control Algorithm for Distri-

buted Data Base Systems,' Proc. 4th Bexkeley Conf. oQn Distzibuted

Data Manatepent A Computer Networks, August 1979.

DMENA79] Nenasce, D.A. and R.R. Muntz, 'Locking and Deadlock Detection

in Distributed Databases.' IM Transactions 9-p Software

Enjineerina, Vol. SE-5, No. 3, May 1979, pp. 195-202.

- -----

Distributed Database System Designer Handbook Page 5-7
References Section 5

[MENA0a] Nenasce, D.A., G.J. Popek and R.R. Nuntz, 'A Locking Protocol

for Resource Coordination in Distributed Databases,' A0 Trn.

qn Database §ys., Vol. 5, No. 2, (June 1980), pp. 103-138.

[iM4A80b] Menasce, D.A. and O.E. Landes, 'On the Design of a Reliable

Storage Component for Distributed Database Management Systems,'

Proc. 6th YLDU, Oct. 1980, pp. 365-375.

[NONT71] Montgomery, V.A., 'Robust Concurrency Control for a Distributed

Information System,' Ph.D. dissertation, Laboratory for Computer

Science, KIT, December 1978.

[PAPA77] Papadimitriou, C.A., Bernstein, P.A. and Rothnie, J.D., Jr.,

'Some Computational Problems Related to Database Concurrency Con-

trol,' Proc. Conf. on Theoretical Computer Science, Waterloo,

Ontario, August 1977.

[PAPA79] Papadimitriou, C.A., 'Serializability of Concurrent Updates,'

Journal of ACM, Vol. 26, No. 4, Oct. 1979, pp. 631-653.

[PARK82] Parker, D.S. and R.A. Rawas, 'A Distributed File System Archi-

tecture Supporting High Availability,' Pc. "t 3g", Sept.

1982, pp. 161-184.

(PEAS801 Pease, N., R. Shostak and L. Lamport, 'Reaching Agreement in

the Presence of Faults,' L4C, 27, 2 (1980), pp. 228-234.

IRAPP75] Rappaport, R.L, 'File Structure Design to Facilitate On-Line

Instantaneous Updating,' Proc. of the IM219 J&QO Conf., pp. 1-

14.

[REED78] Reed, D.P. , 'Naming and Synchronization in Decentralized Coat-
puter Systems,' Ph.D. Dissertation, MIT Department of Electrical

Engineering, Sep. 1978.

[RFE&791 Reed, D.P, 'Implementing Atomic Actions,' Proc. Ilk Ag I=.

_9n Overating Systems Princivles, ACM, Dec. 1979.

(REUT8O] Renter, A, 'A Fast Transaction-Oriented Logging Scheme for Undo

Recovery,' IEE Trans on §o t. k"., SE-6 (July 1980), pp. 348-

356.

[RIES79a] Ries, D., 'The Effects of Concurrency Control on the Perfor-

mance of a Distributed Data Management System,' o. 4.h Berke-

ley Conf. 2n Distributed Data Nanagement 5 Conouter Networks,

August 1979, Berkeley, CA, pp. 75-112.

P ge 5-8 Distributed Database System Designer Handbook
Section 5 References

[IRIES79b] Ries, D.. 'The Effect of Concurrency Control on Database

Management System Performance,' Ph.D Thesis, Electronics Research

Lab., Univ. Of CA, Berkeley, 1979.

(RIES82] Ries, D., A. Chan, U. Dayal. S.A. Fox, 1.1. Lin and L. Yedwab,

'becompilation and Optimization of ADAPLEX: A Procedural Data-

base Language' Tech. Rep. CCA-82-04, Computer Corp. of America,

Cambridge, MA. (in preparation 1982).

[ROSE781 Rosenkrantz, D.J., R.E. Stearns and P.M. Levis, 'System- Level

Concurrency Control for Distributed Database Systems,' h0 Trans.
on Database Systems, Vol. 3, No. 2, June 1978, pp. 178-198.

[SCHL791 Schlageter, G., 'Enhancement of Concurrency in DBS by the Use

of Special Rollback Methods,' Pp Architecture, Bracchi and

Nijssen, eds., North-Holland, 1979, pp. 141-149.

ISHAP771 Shapiro, R.W. and R.E. Millstein, 'Reliability and Fault

Recovery in Distributed Processing,' Oceans '171 Conf. Reod

Vol. 11, Los Angeles, CA, 1977.

[SILL8O] Sillberscbatz, A. and Z. Kedem, 'Consistency in Hierarchical

Database Systems,' Journal of the ACM. Vol. 27, No. lm, Ian 1980,

pp. 72-80.

[SKEE8la] Sheen, D., 'Crash Recovery in a Distributed Database System,'

Ph.D. Thesis, Dept. of Elec. Eng. and Comp. Sci., Univ. of CA,

Berkeley, 1981.

[SIEE8lb] Skeen, D. and M. Stonebraker, 'A Formal Model of Crash

Recovery in a Distributed System,' Proc. Mj Berkeley Workshop,

1981, pp. 129-142.

ISKEE82jJ Skeen, P, 'Nonblocking mmit Protocols,' Proc. 1M. & *-

SIGMOD Conf. -9_ Management of Data, ACM, pp. 133-147.

(S[EE82bJ Skeen, D. 'A Quorum Based Commit Protocol,' Proc. §1h Bekele~

Workshop, Feb. 1982, pp. 69-80.

ISTEA76] Stearns, R.E., P.M. Levis, II and D.J. Rosenkrantz, 'Con-

currency Controls for Database Systems.' Proc. 9 1k flk Amual

Symposium on Foundations ogl Comjuter Science, IEEE, 1976, pp.

19-32.

[STEA8i] Stearns, i.E. and P.J. Roseakrantz, 'Distributed Database Con-

currency Controls Using Before-Values,' kj 1211 &AH-SIGNW

Conf., ACM, N.Y., pp. 74-83.

Distributed Database System Designer Handbook Page 5-9
References Section 5

[STRO81] Strom, B.I. 'Consistency of Redundant Databases in a Weakly

Coupled Distributed Computer Conferencing System,' Proc. 5th

Berkeley Workshop, 1981, pp. 143-153.

[ST .;9] Stonebraker, M., 'Concurrency Control and Consistency of Multi-

ple Copies of data in Distributed INGRES,' EEE Trans. 9n Soft.

Eng., Vol. SE-5, No. 3, May 1979, pp. 188-194.

[THOM79I Thomas, R.H., 'A Majority Consensus Approach to Concurrency

Control for Multiple Copy Databases,' ACM Trans. 2n Database J

tems, Vol. 4, No. 2, June 1979, pp. 180-209.

[TEAI82] Traiger, I.L., J. Gray, C.A. Galtier and B.G. Lindsay, 'Tran-

sactions and Consistency in Distributed Database Systems,' ACM

Trans. on Database Systems, Vol. 7, No. 3, (Sept. 1982), pp.

323-342.

[VERH78] Verhofstad, J.M.S., 'Recovery Techniques for Database Systems,'

ACM Computini Surveys, 10. 2 (1978), pp. 167-196.

[VERH79] Verhofstad, J.M.S, 'Recovery Based on Types,' PA Architecture,

Bracchi and Nijssen, eds., North-Holland, 1979, pp. 125-139.

[WALT82] Walter, B, 'A Robust and Efficient Protocol for Checking the

Availability of Remote Sites,' Proc. 6th Berkeley Workshop, Feb.

1982, pp. 45-68.

Distributed Database System Designer Handbook Page A-1
Appendix A

A.

Notations used in the appendix are explained here and in the figures.

READ THROUGHPUT: average number of read-only requests successfully
processed per unit time (excluding requests processed
and subsequently aborted).

WRITE THROUGHPUT: Average number of write requests successfully
processed per unit time excluding requests processed
and subsequently aborted

Average Response Per Read Request: average time required to process
a read-only request.

Average Response Per Write Request: average time required to process
a write request.

Basic Basic : Basic and Basic algorithm.
Prmr Prmry : Primary Copy and Primary Copy algorithm.
Cntrl : Primary Site and Primary Site algorithm.
Basic Prmry : Basic and Primary Copy algorithm.
Basic Cntrl : Basic and Primary Site algorithm.
Basic Tstmp : Basic Timestamp algorithm.
Mltpl Versn : DDM Multiple Version and Optimistic algorithm.
Basic Optms : Basic and Optimistic algorithm.

Page A-2 Distributed Database System Designer Handbook
Appendix A

TZ=4, DZ=8192

MPiR/(RIIO/ Ino. of copy Basic 'PrmrICntrl Basic'Basic BasicIMltplIBasicj
.W) lCommISI S2 IS3 Baaiclprmry, IPrmryl CntrlTstmp ,Versn !Optms,

* 25% .2 1 1 1 0.8 1.2 1.1 1.6 3.1 3.1 3.3
* 50% .2 1 1 1 2.2 2.6 3.1
* 75% .2 1 1 1 5 30 29 30

5 1 1 1 9: 4j 5j15.
5 .5 1 1 1 6 . T 5

50% .5 1 1 15.
*25 1 1

2 1 1 1 9.8 9.8 9.2
; 2 1 1 1 3.9*25% 2 1 1 1 1.5 2.3 2.4 2.5

@ 75% .2 2/ 2/3 2/ 5.0 4.67.8 10.3 6.1 8.7
75. .2 2/ 2/ 2/ 5.9

75% .2 112,12 112 4: 4:j 3.1• 50% .2 2/3 2/3 2 2

*50 2/2 1/ 1/ 2.8
251 .2 2/3 2/3 2/3 0:; 1.3 :92 1.8 2.0 1.9 2.1

*25% .2 1/2 1/2 1/2 1.1 1.3
* 5% .5 2/32/323 . 8

5 .5 1/ 1/ 1/21 .
R 1 2/3 2/3 2/3 "2S75% 1 1/2 1/2 1/2 3.0• 01 : 1/2/ 1/

25% .5 2/3 2/3 2/3
* 25% .5 1/2 1/2 1/2 1.5

15 22/ 21 21 6.2 6.9 5.4 6.6
1/ 1/ 1/ 3.5

0% 2 2/3 2/3 2/3 3.5
* 50% 2 1/2 1/2 1/2 3.1
* 25% 2 2/3 2/3 2/3 1.4 1.7 1.6 1.7
* 25% 2 1/2 1/2 1/2 1.4
* 25% .2 1 1/2 1/2 1.3
* 50% .2 1 1/2 1/2 3.5 5.0

15 .2 1 1/2 1/2 9.0 16.
5 .5 1 1/2 112 1.2

.50 .5 1 1/2 1/2 3.3
• 75% .5 1 1/2 1/2 7.3

25 1 1 1/2 12 1.2
* 50 1 1 1/2 1/2
* 75% 1 1 1/2 1/2 :o
* 25% 2 1 1/2 1/2 1.1•50% 2 1 1/2 112 !

5 .2 1 1/2 1/2

@ 75% .2 1 1/2 1/2 14. 17.
@ 50% 1 1 1/2 1/2 4.5 5.2

@1 1 1 1/2 9.7 12.
0% .2 1 1/2 1/2 5.5 5.T
75% .2 1 1/2 1/2 16. 17.
50 1 1 1/2 1/2 5.4 5.7
75% 1 1 1/2 1/2 13. 14.
* Multiple programming levels at the three site are 10/11/11.
@ Multiple programming levels at the three site are 16/8/8.
Multiple programming levels at the three site are 24/4/4.
TZ : Average no. of requests per transaction (transaction size).
DZ : Total number of data items in the database (database size).
MP Multiprogramming level.
R/(R+W) : Percentage of transactions that are read-only.
IO/Comm : Ratio of local delay to communication delay

(excluding queueing delay).
No. of Copy : Fraction of the database residing at sites SI, S2, & S3.

Figure A.1 READ THRWUGHPUT: Short Transaction
Loaded & Communication Bound

Distributed Database System Designer Handbook Page A-3
Appendix A

TZ=4, DZ=8192

MPIR/(RIIO/ Ino. of copy Basicj'PrmryiCntrl iBasic'Basic'Basicl~ltpl iBasicI
I/ IOW) CommSl S2 Is3, BasicPrmryTotal I Prury I CntrllTstmpVersn lOptms,

* 258 .2 1 1 1 22 35 .4 5.1 9.6 9.4 9.4
* 50 .2 1 1 1 2.2 .0
* 75 .2 1 1 1 2.2 1.5 2.5 5 9.5 9.6 9.3
* 75 1 1 1 1 2.1 1.5 1.9

75% .5 1 1 1 2.2 1.4 2.2 4

251.5 1 1 1 5
; 5% 2 1 1 1 2.7 3.2 3.1 3.1OI 2 1 1 1 4.0
2 2 1 1 1 4.5 7.4 :2 ;:

.2 2/2/ 21 . 1.6 1. 2. 3.
0 75% .2 2/~ 2/ 2/1:

75% .2 2/32/ 21 1.NS 5 .2 1/2 1/2 1/2 1.4 1.6 1.0

% .2 2/3 2/3 2/3 2 2:j
50% .2 1/2 1/2 1/2 2.6 2
25% .2 2/ 213 2/j 2:1 38 2:7 4.8 6.2 5.4 6.0

* 25% .2 2 . 3/ 2.
* 75% .5 2/3 2/3 2/3 1.1 2.6
* 75% .5 1/2 1/2 1/2 .98 2.2
O 75% 1 2/3 2/3 2/3 1.2

;5% 1 1/2 1/2 1/2 93 00% . 2/ 2/3 2/
50% .5 1/ 1/2 1.7

2%1/. 2: 2.3 1.7 2.2
25% 2 2/1 2/3 2/*

1/ 1 5.2 4.8 5.
25 .2 1 1/2 1/2 3.9

5 .2 1 1/21/2 . 5.0
* 75 .2 1 1/2 1/2 5.2
* 25% .5 1 1/2 1/2 3

50% .5 1 1/2/1/2 3.2
75% .5 1 1/2 1/2 2.5
25% 1 1 1/2 1/2 3.6

* 50% 1 1 1/2 1/2 3.0 4.7
* 75% 1 1 1/2 1/2 2.0 3.0
O 25% 2 1 1/2 1/2 3.4
* 50% 2 1 1/2 1/2 2.6
S75% 2 1 1/2 1/2 1.5
@ 50% .2 1 112 1/2 4.8 5.4

5% .2 1 1/2 1/2 4.0 5.7
50% 1 1 1/2 1/2 4.4 3.0
25% 1 1 1/2 1/2 .450% .2 1 1/2 1/2 2.6L9 50%.2 1 1/2 1/24.54

50% .2 1 1/2 1/2,5

0 1 112 1/2 5. .6
75% 1 1 112 1/2 5:6

* Multiple programming levels at the three site are 10/11/11.
@ Multiple programming levels at the three site are 16/8/8.
Multiple programming levels at the three site are 24/4/4.
TZ : Average no. of requests per transaction (transaction size)
DZ : Total number of data items in the database (database size)
MP : Multiprogramming level.
R/(R+W)..: Percentage of transactions that are read-only.
IO/Comm : Ratio of local delay to communication delay

(excluding queueing delay).
No. of Copy : Fraction of the database residing at sites Si, S2, & S3.

Figyre A.2 WRITE THROUGHPUT: Short Tra ation
Loaded & Communication Bound

Page A-4 Distributed Database System Designer Handbook
Appendix A

TZ=4, DZ=8192

iR/ RIO Inc of c opyIBasicIPrrylCntrl IBasie'Basic'Basic I~ltpl I~aaicj
I+ ConIS1 cS2 IS3 BasirmryTotal Prmry Cntrl TstmpVersn Optms,

* 25% .2 1 14. .26 .20 .20 .22
* 50% .2 1 1 1 .2 .

5 .2 1 1 1 .1 . 2.1 .26 .20 .20 .22
S751 .5 1 1 1 .55 4.7 2: .56

* 50% .5 1 1 1 .55
* 25% .5 1 1 1 .55

;% 2 1 1 12.1 2 2 2
0% 2 1 1 1 2.1

'25% 2 1 1 1 2.1 2 2 2
* 75% .2 2/3 2/3 2/3 2.7 4.6 6.2 2.5 2.2 2.6 2.5
@ 75% .2 2/3 2/3 2/3 4.9
75% .2 2/3 2/3 2/3 4.2

;5% .2 1/2 1/2 1/2 3.6 4.6 7.2
0%.2 2/3 2/3 2/3 2.7 4.

* 50% .2 1/2 1/2 1/2 3 :.
•25% 22/ 2/3 2/3 . 4.9 2.5 2.7 2.8 2.8
* 25% .2 1/ 1/2 1/2 3.8 4.7

75% .5 2/j 2/3 2/3 6 2.6
75% . 15 1/2 1/2 :3 3.5
75% 1 2/ 2/ 2/3

1 1/ 1/2 1/2
• .5 2/3 2/3 2/3

50 .5 1/2 1/2 1/2 3.6
• 25% .5 2/3 2/3 2/3 2.7

251 .5 1/2 1/2 112
75 2 2/3 2/3 2/3 3.2 3.4 3.3

S75% 2 1/2 1/2 1/2 3 .
• 50% 2 2/3 2/3 2/3 :5
* 50% 2 1/2 1/2 1/2
* 25% 2 2/3 2/3 2/3 .6 3.4 3.5 3.5
• 25% 2 1/2 1/2 1/2 2
* 25% .2 1 1/2 1/2 3

50% .2 1 112 112 296 75% .2 1 1/2 1/2 2.0
25% .5 1 1/2 1/2 4.0

* 50% .5 1 1/2 1/2
1% .5 1 /2 1/2 ii
5 1 1 1/2 1/2

50% 1 1 1/2 1/2 3.7 1.9
15 1 1 1/2 1/2 2 2.7
51 2 1 112 112 4.

*50% 2 1 1/2 1/24:
* 75% 2 1 1/2 1/2 4.3
@ 50% .2 1 1/2 112 2.1 .40
@ 75% .2 1 1/2 1/2 1.3 59
@ 50% 1 1 1/2 1/2 2 1.4
@ 75 1 1 1/2 1/2 22: 1.8# 50 .2 1 112 1/2 1.0 .2
75% .2 1 112 112 .71 .34
50 1 1 1/2 1/2 1.8 1.2
75% 1 1 1/2 1/2 1.5 1.2
* Multiple programming levels at the three site are 10/11/11.
; Multiple programming levels at the three site are 16/1/8.
@ Multiple programming levels at the three site are 24/4/4.

TZ : Average no. of requests per transaction (transaction size).
DZ : Total number of data items in the database (database size).
MP : Multiprogramming level.
R/(R+W)-: Percentage of transactions that are read-only.
IO/Comm : Ratio of local delay to communication delay

(excluding queueing delay).
No. of Copy : Fraction of the datatase residing at sites SI, S2, & S3.

Figure A.3 Average Response Per Read Request
Short Transactions & Communication Bound

Distributed Database System Designer Handbook Page A-5
Appendix A

TZ=J, DZ=8192

MP R/(R IO / [no. of coy IBaustc Prary iCntrl IBanic iBasc iBasil Pltpl [BasicI

I+W IComm,Sl 382 IS9]BasicPrmryTotaI PrmryCntrl rTstmpnVern Optms1

*25% .2 1 1 1 12 5.2 4.4 5.3 .2 .28 .29
*50% .2 1 1 1 12 5.1 3.5

* 751 .2 1 1 1 11 9 3 4.6 .2 .26 .26
•75% 1 1 1 1 8.6 4 3.5

.5 1 1 1 10 4.8 2.7 2.;0 5 1 1 1 .9 ."° . :,* 25 . 5 1 1 1
* 75% 2 1 1 1 Z35 2.0 2.2 2.1

5 2 1 1 14
25% 2 1 1 1 5:3 2.0 2.2 2.

@0 232/212/2 8. 4.8 6: 4.9 2.2 27 2
5 .2 2/3 2/ 2/ 22

75% .2 2/ 2/ 2/ Z-5
S25% .2 1/ 1/ 1/ 82 6. 4 .4
*5 .2 2/3 2/3 2/3 .3 41.9
*50 .2 1/2 1/2 1/2 6 4. 7.
*25% .2 2/3 2/3 2/3 8. 5.0 2.7 2.9 2.9

* 25% .2 1/2 1/ 1/2 6.5
* 75% 5 2/ 2/3 2/3 6 4
* 75 % 1/ 12 112 U

50 2 1 7.5

0* 5% 22/32/3 2/3
50 2 1/2 1/2 1/2 4.9
S 52 2/32/3 2/3 5.1
25 50 2 1/2 1/2 1/251
25 2 212/ 2/3 5.2 3.4 3.7 3.6
T 5% 2 1/2 1/2 1/2 5.25 2 21 / 2/ 5.1

• 25 2 1/ 1/ 1/ 5.0
5 .2 1 /2 1/2 4.0

.5 .2 1 1 1/2 .1 1.5
5 .5 1 1/2 1/2 4.1
5 .5 1 1/2 1/2 3.4
75 .5 1 1/2 1/2 U

* 25 1 1 1/2 1/2 4:1
* 50% 1 1 1/2 1/2 3 3.8
* 75% 1 1 1/2 1/2 2.1
* 25% 2 1 1/2 1/2 5.1
* 50 2 1 1/2 1/2 4.7
* 75 2 1 1/2 1/2 4.4
@ 50 .2 1 1/2 1/2 2.1 2.9
@ 75% .2 1 1/21/2 1.3 2.2
@ 50 1 1 1/2 1/2 2 .2
@ 75 1 1 1/2 1/2 2.4 0
50 .2 1 1/2 2
75 .2 1 1/2 1/2 .1 1
S50 1 1 1/2 1/2 1 2 3

751 1 1 1/2 1/2 1: 1:7

• Multiple programming levels at the three site are 10/il11/.
@ Multiple programming levels at the three site are 16/ / 8.
Multiple programming levels at the three site are 24/4/4.
TZ : Average no. of requests per transaction (transaction size)
DZ : Total number of data items in the database (database size).
MP : Multiprogramming level.
R/(R+W) : Percentage of transactions that are read-only.
IO/Comm" : Ratio of local delay to communication delay

(excluding queueing delay).
No. of Copy : Fraction of the database residing at sites S1, S2, & S3.

Figure A.4 Average Response Per Write Rejuest, Short
Transactions & Communication Bound

Page A-6 Distributed Database System Designer Handbook
Appendix A

TZ- 4, DZ= 8192

MP R/(R 10/ Ino.1of copy Cntrl Basic
I+W)I Comm ISi 182 IS3 i Total I Prmry

2 75 .4/1/2 1 1/2 1/2 68/. 8./2:925 .4/1/2 1 1/2 1/22

32 15% 2/112 1 1/2 1/2 .9 /2.132 25 2/1 2 1 112 112 6.9/7 . /2.1
75% .4/1/8 1 1/2 1/2 3.3/1 . 8/1.2

32 25 .4/1/8 1 1/2 1/2 .39/1.2 41/1.2
32 151 21/8 1 1/2 1/2 3.1/1.1 3.6/1.2
32 5% 2/1/8 11/2 1/2 .40/1.2
32 75% .4/1/2 213 2/3 2/3 26/.87

S2 25% .4/1/2 2/3 2/3 2/3 .66/1 .
75% 2/1/2 2/3 2/3 2/3 2.6/95

2 25% 2/1 2 2/3 2/3 2/ 75/1.9
32 75% .4/1/8 2/3 2/3 2/3
32 25 .4/1/8 2/3 2/3 2/3

N 75% 2/1/8 2/3 2/3 2/3
32 25% 2/1/8 2/3 2/3 2/3
S2 75% .4/1/2 1 1/2 1/2 2.9/3.1 1.9/3.5

2 25% .4/1/2 1 1/2 1/2 6. /6.3 117
12 7% 2/1/2 1 1/2 1/2 4. /4.1 1.1/3

32 25% 2/1 2 1 1/2 1/2 6.9/7.0 2:I4/7.6
32 15% .4/1/8 1 1/2 1/2 5. J/543 4.3/16

2. 4/1/8 1 1/2 1/2 61 / 5.5/.9
2P T Mu r2/1/8 1 1/2 1/2 ./

32 25% 2/1/8 1 1/2 1/2 14/14

2 5 :4/1//221 2 2/~ 1101%
32 51 2/1/2 2/. 2/ 2/ 10/9
32 25% 2112/ 1 2/3 21~ 11112

S2 75% .4/1/8 2/3 2/3 2/3
32 25% .4/1/8 2/3 2/3 2/3

32 751 2/1/8 2/3 2/3 2/3
32 25% 2/1/8 2/3 2/3 2/3

TZ =Average number of requests pr transaction (transaction -size).
DZ = Total number of data item in the database (database size).
MP =Multi programming level.
R/(R+W) = Percentage of transactions that are read-only.
IO/Comm = local delay/message communication delay/data communication delay
no. of copy = Fraction of the database residing at each site.

Figure A.5 Through-Put (Read/Write): Short Transactions
& Communication Bound

I

Distributed Database System Designer Handbook Page A-7
Appendix A

TZ=4, MP=32, DZ=8192.

MPiR/WiIO/IDatabase I Basic Prary CntriI Basic IBasic Basic Mltpl Basic
IJComCopies Basic Prmry Prmry Cntrl Tstmp Veran Optms

'.25 .2 1 1 1 .97/2.9 1.4/4.3 1.3/4.0 1.5/4.5 1.8/5.4 1.9/5 1.8/5.6
* .50 .2 1 1 1 2.5/2.6 3.2/3.2 2./3.0
* "75 .2 1 1 1 5.6/1.8 5/1. 5.0/1.6 711/2.5 8.6/2.9 8.1/2.7 8.1/2.7

*. .5 1 1 1 .40/1.3 -§11 /l.12
* .50 .5 1 1 1 1.1/1.1 1. /1.4 1.6/1.6
* .75 .5 1 1 1 2.3/.-9 2.4/.80 2.3/.76 3.1/1.0
* .25 1 1 1 1 .26/.b4 .34/.94 .34/1.0
• .50 11 5V/55 2/70 /.81
* .75 1 1 1 1 1.2/.39 1.2/.39 1.3/.39 1.6/.53
* .25 2 1 1 1 .11/.32 .21/.59 .21/.59 .22/.60
* .50 2 1 1 1 .28/.28
* .75 2 1 1 1 .61/.20 .94/.31 .85/.28 .84/.28

..25 .2 2/3 2/3 2/3 1.2/3.6 1.5/4.7 1.3/3.9 1.5/4.7 1.7/4.9 2.0/6.0 2.0/5.9
.50 2 2/3 2/3 2/3 2.9/2.9 3.3/3.3 29/2

.75 .2 2/ 2/3 2/3 5.6/1.5 5.6/1.8 4.7/1.6 6.2/2.1 7.1/2.5 7.8/2.4 7.7/2.6
@72 2/ 241/

" :22 2/3 2/ 2/ 3:4/1:?
5 2/ 2/ 2/ /1.6.68/2.0

.50 .; 2/ 2/ 1./1.2 1.5/1.

.75 .5 2/3 2/ 2/ 2. /.9 2/1/.60 2.2/72 2.4/.4
2.5 1 2/1 2/ 2/ .2/221 .3 /1.0

• .50 1 2/ 2/ 2/3 .6 .80/.
:75 1 2/1 2/3 2/3 1.2/.39 1.1/.39 1.3/.46
51 2/ 2/ 2/3 .18/.54 24/.72.23/.71

* .75 1 2/3 2/ 2/3 .78/.26 i.0/.32 :88/.29
* .25 .2 1/2 1/2 1/2 1.4/4.3 1.6/4.9
* .50 .2 1/2 1/2 1/2 3.3/3.2 3.6/3.6

:75 .2 1/2 1/2 1/2 5.7/1.9 5.8/1.8 4.6/1.5
5 .25 .5 1/2 1/2 1/2 .60/1.5 .71/2.1 .66/2.2

* .50 .5 1/2 1/2 1/2 1.4/1.4 1.5/1.5 1.6/1.6
• .75 .5 1/2 1/2 1/2 2.5/ 78 2.4/.88 2.8/.86

.25 1 1/2 1/2 1/2 .32/:4 .37/1.1 .36/1.1
* .50 1 1/2 1/2 1/2 .72/ 71 .80/.76 .51/.81
* .75 1 1/2 1/2 1/2 1.2/ 3 1.3/.42 1.4/.47
* .25 .2 1 1/2 1/2 1.2/3.7
• .50 .2 1 1/2 1/2 2.8/2.7 g.1/?.2

.75 .2 1 1/2 1/2 46/1.4 9

.25 .5 1 1/2 1/2 54/1
* .50 .5 1 1/2 1/2 1.2/1:1

.5 1 1/2 1/2 2.01
: 5 1 1/2 1/2 .30/.5

• .50 1 1 1/2 1/2 .63/.63 .74/.68
• .75 1 1 1/2 1/2 1.1/.34 1 .241

.50 .2 1 11/2 1/2 2.4/2.4 2.12

.75 .211/2 1/240/5211
@ .50 1 1 1/2 12 .4/.; 32/.60* .75 12 1 1/2 1/2 0/5.1.

@ .75 1 1 1/2 1/2 .90/.31 1.1/.38
.50 .2 1 112 112 2.0/2.1 2.2/2.2
.75 .2 1 1/2 1/2 3.4/1.1 4.0/1.3#.50 1 1 1/2 1/2 .45/.44 .i8/ 49
f .75 1 1 1/2 1/2 .75/.25 .88/:29
-Multiple programming levels at the three site are 10/--/l1.

* Multiple programming levels at the three site are 16/8/8.
@ Multiple programming levels at the three site are 24/4/4.
Assumptions:
Queueing for local processing is simulated.
Two kinds of local processing delay are simulated:

message processing delay and data rocessing delay.
The average round trip communication is fixed at 1
The message processirig delay is fixed at 5% of the

5% of round trip communication delay
Ratio of data processing & message rocessing delay is 10
The ratio of data processing delay fo round trip

communication delay is shown in column 'I0/Co'

Notation:
TZ = Average number of requests per tranection (transaction size).
DZ =Total number of data items in the database (database size).
MP = Multiplr programming level.
R/W = Percentage of transactins that are read-only.
IO/Com = Ratio o local data procesping delay to communication

delayofexcluding queueing
Database Copies = Fraction of the database residing at each site.

Figure A.6 Through-Put (Read/Write)A Short
Transacticns & 10 Boundea

Page A-8 Distributed Database System Designer Handbook
Appendix A

TZ=4, MP= 32, DZ= 8192

MKPR/W IO/ Database Basic Prmry Cntrl Basic Basic Basic I ltpl asic

ComCopies Basic Prmry Total. Prmry Cntrl Titpp e Bptas

& .25 .2 1 1 1 3.6/8.7 4.0/5.4 5.5/5.Z 2.3/5.5 3.0/3.0 3.4/3.5 3.4/3-5
.50 .2 1 1 1 .3/8.1 4.0/5.4 5.3/5.4 "
.75.2 1 1 1 2.9/7.3 4.0/5.3 5.0/5.1 2.2/5.6 2.3/2.3 2.9/3.0 2.9/3.1

* .25 .5 1 1 1 9.0/20 9.2/12 5.5/12
* .50 .5 1 1 1 Bo/18 9.1/12 5.4/12

:15 .5 1 1 7.1/1 9. /12 11/11 5.4/13
1713 1 /24 11/24

O .50 1 1 1 1 16/35 1b/24 11/24
:15 1 1 1 1 14/a 18/24 20/20 11/24• :. 2 1 1 5/7 272T 33/33 33/33

.50 2 1 1 1 12/10
* .75 2 1 1 1 28/b1 22/22 29/29 29/29

:1.5 .2 2/3 2/3 2/3 38/6.6 4.6/4.1 5.8/6.0 3.2/4.9 3.7/3.6 2.9/3.3 3.-4/3.5
• .50 .2 2/3 2/ 2/ 3:7/6:4 4.4/4.6 5.5/5.7

-75 2 2/ 21 2/ 3./6.2 4.3/4:4 5/55 3.2/5.0 3-0/3.0 2.4/2.7 3.2/3.4
e .75 .2 2/3 2/3 2/3 6.1/6.2
.75 .2 213 2/3 2/3 7-1/7.3
* .25 .5 2/3 2/3 213 9.2/15 11/11 7.4/11
* .50 .5 2/3 2/3 2/3 B.8/15 10/10 7.5/11

.75 .5 2/3 2-/3 2/3 8.4/14 9.8/9.9 11/12 7.6/11

.25 1 2/3 2/3 2/3 18/2? 15/22
" .50 1 2/3 2/3 2/ 17/2 15/22
: .75 1 2/ / 2/ 1127 22/22 15/225 1 2/3 2/3 2/3 33/34 26/28 30/30

: .5 1 2/3 2/ 213 12/12 20/21 9/29
.2 112 11? 1/2 4.0/5.4 4.2/4.5

* .50 .2 1/2 1/2 1/2 3.8/5.2 4.2/4.4
* .75 .2 1/2 1/2 1/2 3.7/5.1 4.1/4.3 5.5/5.7

.25 .5 112 1I2 1/2 9.2/12 9.9/10 7.4/10.50 .5 1/2 1/2 1/2 12 :/9: :9
* .75 .5 1/2 112 1/2 /11 /9N
* .25 1 1/2 1/2 1/2 l/24 19/20 15/20

.50 1 1/2 1/2 1/2 1b/2 19/19 15/20
* .75 1 1/2 112 1/2 17/2e 18/19 15/21
* .25 .2 1 112 1/2 6.0/6.1
• .50 .2 1 112 1/2 A57/5 3.1/6.4
* .75 .2 1 1/2 1/2 5.5/5.1 3.2/6.7.25 .5 1 1/2 1/2 13/14
O .50 .5 1 1/2 1/2 13/13

.75 .5 1 1/2 1/2 12/12
*.25 1 1 1/2 1/2 26/26
a .50 1 1 1/2 1/2 25/25 14/29
a .75 1 1 1/2 1/2 23/24 14/30
* .50 .2 1 1/2 1/2 6 4.0/6.9
@ .75 .2 1 112 1/2 6:0/6.2 3.7/7.0
@ :50 1 1/2 1/2 28/28 17/31
S75 1 1 1/:' 1/2 27/27 1i/32
.50 .2 1 1/2 1/2 7.0/7.2 5.4/7.4
S.5 .2 1 1/2 1/2 6.7/6.8 5.0/7.3
1 1/2 /2 23/34

.751 1/2 1/2 2/ 25/N4

M ultiple programming levels at the three site are 10/11/11.
. Multiple programming levels at the three site are 10/8/8.
Multiple programming levels at the three site are 24/4/4.
Assumptions:
Queuei n for local processing is simula.ed.
Two kins of local processing delay are simulated:

message processing delay and data processig delay.
The average rocund trip communication is fixed at 1
The message processing delay is fixed at 5% of the

5% of round trip communi cation delay
Rati io of data processing & message processing delay is 10
The ratio of data processing delay to round trip

communication delay is shown in colume 'IO/CoM'

Notation:
TZ = Average number of requests per transaction (transaction size).
DZ Total number of data items in the database (database size).
P = Multiplr programming level.
/W P Percentage of transactins that are read-only.

IO/Com = Ratio of local data processing delay to communication
delay (excluding queuein).

Database Copies = Fraction of the database residing at each site.

Figure A.7 Average Response Time (Read/Write):
Short Transactions & I0 Bound

Distributed Database System Designer Handbook Page A-9
Appendix A

TZ=16, DZ=8192, MP=32

MP R/WiIO/jDatabase Basic Basic Mltpl Basic
ComlCopies P I Tstmp Versn Optms

* .25 .2 1 1 1 2.0/6.0 1.5/4.4 .90/.20

: :~.2 1 1 1 9.2/3.0 .9/2.8 6.6/2.1 .912.15 2 1 1 1 .25/ 83 ./.46 .09/.20 .09/.20
:J; 2 1 1 1 1.1/3 :90/.28 T69/22 9/2

.2 2/3 2/3 2/3 ./. 1.4/3.9 2.6/6.1 9 1/ 2

.75 .2 2/3 2/3 2/3I 7.9/2.7 67/1 10./3.1 9.6/34
25 2 2/3 2/3 2/3 .2/.81 .1.3 .26/.7 .23/.65

• .75 2 2/3 2/3 2/3 .94/.33 .68/.22 1./.44 1.3/.37

* Multiple programming levels at the three site are 10/11/11.
Ratio of local data processing & message processing delay is 10

Assumption:
Queueing for local processing is simulated.
Two kinds of local processing are simulated:

(message and data processing).
The round trip communication is fixed at I
The local message processing delay is fixed at

5% of the round trip communicatior delay
The ratio of local data processing delay to round trip

communication delay is shown in colume 'IO/Comm'

Notation:
TZ = Average number of requests per transaction.
DZ Total number of data items in the database.
MP = Multiple programming level.
R/W = Ratio of read-only to write transactions.
IO/Com = Ratio of local data processing delay to

communication delay (excluding queueing).
Database Copies = Fraction of the database at each site.

Figure A.8 Through-Put (Read/Write): Long
Transaction Loaded & 10 Bound

F:

Page A-IO Distributed Database System Designer Handbook
Appendix A

TZ-16,DZ=81 92,MP=32

MPI o itabase Basic Basic Mltpl Basic
Prmry Tstmp Versn ms

.25 .2 1 1 1 2.8/4.6 2.2/2.2 1.1/2.7 2.1/2.6: 5 .2 1 1 1 1-9/5.5 2.212.2 1.6/2.8 1 .;/3 0
1 2 1 1 20/ 3 22./22 13/25 19/24

* .75 2 1 1 1 17./ 2 21/21 19/26 21/27
.25 .2 21 211 21 .4/2.6 2. 12

S.75 .2 2/1 2/ 2/1 N./5.6 NV92.3 1. /2.6 2.9/31
.25 1 2/3 2/ 2/3 25./33 29/2 Ia/9 18/21

* .75 1 2/3 2/3 2/3 22.12 28/28 16/20 18/25

* Multiple programming levels at the three site are 10/11/11.
Ratio of local data processing & message processing delay is 10

Assumpti on:
Queueing for local processing is simulated.
Two kinds of local processing are simulated:

(message and data processing).
The round trip communicationis rixed at 1
The local message processing delay is fixed at

5% of the round trip communication delay
The ratio of local data processing delay to round trip

communication delay is shownin colume 'IO/Comm'
Notation:
TZ = Average number of requests per transaction.
DZ Total number of data items n the database.
MP = Multiple programming level.
R/W = Ratio of read-only to write transactions.
IO/Com = Ratio of local data processing delay to

communication delay (excluding queueing).
Database Copies = Fraction of the database at each site.

Figure A.9 Average Response Time: Long
Transaction Loaded & 10 Bound

Distributed Database System Designer Handbook Page A-11Appendix A

TZ=16,DZ:8192,MP=32

MPIR/WIIO//Database Basic Basic Mltpl Basic
ComiCopies Prmry Tstmp Versn Optms

.25 .2 1 1 1 2.4/..3 9/26 3.6/8.6 4.3/I0
:115 .2 1 1 1 21 / .5 64/19 8/11 40/12
5 :_ 2 1 1 1 1.2/3.5 1.0/2.8 .12/.98 .46/1.3

2 1 1 10/2.6 6.2/1.9
5 : .2 21 2/ 21 2.2/6.5 1.6/4.4 .9712 1./5.15 .2 21 21 21 9.9/3.2 7.912,4 i. 12 13: : 5 2 2/3 2/1 2/ 1.0/2.9 .8 /2.4 .54/I.5 .66/2.0

.75 2 2/3 2/3 2/3 1 4.7/1.5 4.0/1.3 5.6/1.7 4.8/1.3

• Multiple programming levels at the three site are 10/11/11.

Assumption:
Queueing for communication channel is simulated.
Only one kind of local processing is simulated.
The average round trip communication is fixed at 1
The ratio of local data processing delay to round trip

communication delay is shown in colume '1IO/Comm'

Notation:
TZ = Average number of requests r transaction.
DZ Total number of data items tn the database.
MP = Multiple programming level.
R/W = Rati of read-only to write transactions.
IO/Com = Ratio of local processing delay to communication

delay (excluding queueing delay).
Database Copies = Fraction of the database at each site.

Figure A.10 Through-Put (Read/Write): Long Transaction
Loade8 & Communicaton Bound

MPIR/WjIO0/Database j Basic Basic 1 Mltpl Basic
ComCopies Prmry Tstmp , Versn Optms

" .25 .2 1 1 1 1.2/4.1 .2/.2 .2/.53 .42/.51
" .75 .2 1 1 1 .52/3.) .2/.2 .21.45 .30/.50

.252 1 1 1 3.9/7.8 2/2 2/4.9 3.5/4.6
'.5 2 1 1 1 1 .8 212 2/3.1 2.8/4.

: 5 .2 2/3 2/3 2/3 2.5/4.2 2/2 .86/3.7 2.2/2.
22 21 2A 6:3/8:9 3.113. 3 .0, 5 ./ .7

* .75 1 2/3 2/3 2/3 4.2/8.5 3.213.1 3.1/5.7 4.2/6.6

* Multiple programming levels at the three site are 10/11/11.
Assumption:
Queueing for communication channel is simulated.
Only one kind of local processing is simulated.
The average round trip communication is fixed at 1
The ratio of local data processing delay to round trip

communication delay is shown in colume '10/Comm'

Notation:
TZ = Average number of requests per transaction.
DZ Total number of data items in the database.
MP = Multiple programming level.
R/W = Rati of read-only to write transactions.
IO/Com = Ratio of local processing delay to communication

delay (excluding queueing delay).
Databae Copies = Fraction of the database at each site.

Figure A.11 Average Response Time (Read/Write)
Long Transaction & Communication Bound

MISSION
Of

Rome Air Development Center
RADC ptan,6 and execI-te/s 'czewch, deveP-opment, teAt and
seeCected acquJi,6ton puogtanm -in .6uppott 06 Command, ContAot

* Ccmunation, and lntettiqence (C31) actiuvLtie,6. Technicat
and e~i Lnee~iyi 6ppotLt within vkea" oA techica! competence
t&s r -ded to 5Sf' Ptoptam O6Aice, (P06). and other ESV
eie tt6 Thie p'incipat teciniicai mizsion ate"~ a/te
communictiovv, eectlyomagnetic guidance and contAot, 'sWt-
vitance. 0 q'tound and cejo,pace objet~s, inteeiqence data

cottection and fhancdfing, in6orinlion* systemi technotogy,
iono~phe~xuc p'topaqcation, sof-id St4ate sciencez6, m-Lc~owavle
phyq5ics and etecttoniLo Aeabitity, maintainabif-ty and
c ompatibitity.

IA

ilL]

